Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Multiple Sklerose: T-Zellen als Serienkiller

12.10.2009
Durch fehlgeleitete Aktivitäten schädigt das Immunsystem bei Multipler Sklerose auch die Nervenzellen selbst. Das passiert regelhaft beim gezielten Angriff des Immunsystems auf die Umhüllung der Nervenzellen, wie Forscher aus Würzburg und Zürich erstmals experimentell nachgewiesen haben.

Entzündungen im zentralen Nervensystem können von Viren oder vom Immunsystem ausgelöst werden; letzteres ist zum Beispiel bei der Multiplen Sklerose der Fall. Drastisch sind die Folgen: Es sterben diejenigen Zellen, die eine isolierende Hülle um die Nervenfasern herum aufbauen und intakt halten. Die Hüllen gehen ebenso verloren, und oft sterben schließlich auch die Nervenzellen selbst.

"Bei Multipler Sklerose zum Beispiel nimmt man an, dass nicht nur der Verlust der Myelinhüllen, sondern vor allem der Tod der Nervenzellen entscheidend für die bleibenden Behinderungen ist, mit denen viele Patienten zu kämpfen haben", sagt Professor Heinz Wiendl von der Neurologischen Klinik der Universität Würzburg. Das seien Behinderungen wie Lähmungen oder eine eingeschränkte Sehfähigkeit.

Zwei Arbeitsgruppen haben nun zeitgleich erstmals beschrieben, dass bestimmte T-Zellen des Immunsystems nicht nur die myelinbildenden Zellen direkt beeinträchtigen, sondern auch "Kollateralschäden" bei Nervenzellen oder deren Fortsätzen hervorrufen. Veröffentlicht sind die Arbeiten in den Fachblättern Glia und American Journal of Pathology.

T-Zellen: Indirekter Effekt lässt Nervenzellen sterben

Wiendls Team aus der Neurologie der Universität Würzburg ist das in Hirngewebekulturen gelungen: T-Zellen, die ausschließlich eine bestimmte Struktur auf der Oberfläche der myelinbildenden Zellen attackieren, verursachten innerhalb weniger Stunden auch einen signifikanten Untergang von Nervenzellen. Wie dieser indirekte Effekt zu Stande kommen könnte, erklärt der Würzburger Forscher Sven Meuth: "Möglicherweise setzen die T-Zellen lösliche Faktoren frei, wie Perforin oder Granzym-B, die dann zu den Nervenzellen wandern und sie schädigen."

Mord in Serie: Jede T-Zelle schlägt vielfach zu

Geradezu wie Serienkiller gehen die aggressiven T-Zellen dabei vor: "Eine einzige davon kann bis zu 30 myelinbildende Zellen und gleichzeitig bis zu zehn Nervenzellen töten", sagt Heinz Wiendl.

Diese T-Zellen schneiden die Fortsätze von Nervenzellen regelrecht durch. Das konnte das Team von Professor Norbert Goebels von der Universität Zürich (jetzt Düsseldorf) in einem ähnlichen experimentellen Ansatz mit Videoanalysen belegen.

Möglicher Angriffspunkt für neue Therapien

"Diese Ergebnisse helfen uns, die Entstehung von akuten und chronischen Schäden bei Entzündungen des zentralen Nervensystems besser zu verstehen", erläutert Professor Wiendl. Auch die Patienten profitieren in der Zukunft möglicherweise von den Erkenntnissen - schließlich eignen sich die aggressiven T-Zellen als Angriffspunkt für neue Therapien. Darum wollen die Würzburger Wissenschaftler noch möglichst viel Neues über die Serienkiller herausfinden.

Multiple Sklerose: die Krankheit

Weltweit sind schätzungsweise 2,5 Millionen Menschen von der Multiplen Sklerose (MS) betroffen. In Deutschland leben nach aktuellen Hochrechnungen etwa 122.000 MS-Erkrankte. Hier werden pro Jahr rund 2.500 Fälle neu diagnostiziert; Frauen erkranken fast doppelt so häufig wie Männer.

Bei MS greift die Immunabwehr fälschlicherweise das eigene Nervensystem an. Die Erkrankung beginnt meist im frühen Erwachsenenalter und verläuft schubweise. Die Betroffenen spüren zu Beginn häufig ein Kribbeln in Armen und Beinen, stolpern vermehrt oder bekommen Schwierigkeiten beim Sehen. In schweren Fällen leiden sie später unter gravierenden Behinderungen; manche sind dann auf einen Rollstuhl angewiesen.

Heilbar ist die Multiple Sklerose bislang nicht; die Medizin kann aber die Symptome lindern und die Lebensqualität der Patienten verbessern. An der Neurologischen Klinik der Universität Würzburg werden mehr als 2000 MS-Patienten betreut.

Publikationen in Glia und American Journal of Pathology

"Collateral neuronal apoptosis in CNS gray matter during an oligodendrocyte-directed CD8(+) T cell attack", Göbel K, Melzer N, Herrmann AM, Schuhmann MK, Bittner S, Ip CW, Hünig T, Meuth SG, Wiendl H, Glia 2009, online publiziert am 24. September

"Collateral bystander damage by myelin-directed CD8+ T cells causes axonal loss", Sobottka B, Harrer MD, Ziegler U, Fischer K, Wiendl H, Hünig T, Becher B, Goebels N, American Journal of Pathology 2009; 175(3):1160-6, online publiziert am 21. August

"CD8+ T cells and neuronal damage: direct and collateral mechanisms of cytotoxicity and impaired electrical excitability", Melzer N, Meuth SG, Wiendl H, FASEB Journal 2009, online publiziert am 30. Juni

Kontakt

Prof. Dr. Heinz Wiendl, Neurologische Klinik der Universität Würzburg, T (0931) 201-23755, heinz.wiendl@klinik.uni-wuerzburg.de

Prof. Dr. Norbert Goebels, Neurologische Klinik der Universität Düsseldorf, norbert.goebels@uni-duesseldorf.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-duesseldorf.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie