Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Multifunktionstool der Zelle

21.12.2015

Zellen haben einen untrüglichen Riecher, der ihnen anzeigt, in welche Richtung sie wachsen müssen, um sich einer Duftquelle zu nähern. ETH-Forscher und -Forscherinnen haben nun herausgefunden, wie dieser Riecher funktioniert.

Zellen sind oft vor das Problem gestellt, dass sie von einer verheissungsvollen Duftwolke umgeben sind und in die Richtung der Duftquelle wachsen sollten. Nervenzellen beispielsweise bilden lange Fortsätze aus, die von Signalen anderer Zellen angezogen werden, so dass das Netzwerk des Nervensystems entsteht; Fresszellen erkennen die Duftstoffe von Krankheitskeimen, um sie zielgerichtet zu verfolgen und zu vernichten.


Eine Hefezelle spürt einen Duftstoff-Gradienten auf und wächst in die Richtung der Signalquelle. Dazu benutzt sie ein Multifunktionstool (gelbe Spur), das sich entlang der Membran bewegt.

Montage: ETH Zürich

Wie aber nehmen Zellen diese Duftstoffsignale wahr, die immer schwächer werden je weiter sie von der Quelle entfernt sind? Wie «lesen» Zellen diese Signalabschwächung – fachsprachlich Signalgradient genannt -, um ihr Wachstum oder ihre Bewegung in die Richtung der Signalquelle zu lenken? Für die Biologie ist es eine grundlegende Frage wie räumliche Signale wahrgenommen werden und ein bisher weitgehend ungelöstes Rätsel.

Sensor, Prozessor und Motor in einem

Nun präsentieren Forscherinnen und Forscher um ETH-Professor Matthias Peter vom Institut für Biochemie eine mögliche Lösung: Zumindest Hefezellen verfügen über ein sehr fein regulierbares Multifunktionstool, das chemische Signale erkennt und entsprechend verarbeitet sowie die richtige Reaktion – Wachstum in Richtung der Signalquelle – einleitet. Damit riechen Hefezellen, wo sich potenzielle Geschlechtspartner in der Umgebung befinden, so dass sie zu diesen hinwachsen können.

Für ihre Studie setzten die Biologinnen und Biologen einerseits auf mikroskopische Beobachtungen, andererseits auf ein Computermodell, welches sie in interdisziplinärer Zusammenarbeit mit Forschern des Automatic Control Labs um Heinz Köppel (jetzt an der TU Darmstadt) entwickelten.

Proteinklumpen auf Bedarf

Vermutet die Zelle in ihrer Umgebung einen Signalgradienten, setzt sie an zufälliger Stelle der Membran das Multifunktionstool zusammen. Dieses Tool ist ein grosser Proteinkomplex aus über 100 verschiedenen Komponenten. Der Komplex ist so gross, dass er im Fluoreszenzmikroskop gesehen werden kann. Die Forschenden nennen ihn «Polarity Site» (PS), weil dort, wo er sich ausbildet, polares Wachstum einsetzt.

Mit Hilfe der Fluoreszenzmikroskopie konnten die Forschenden nun beobachten, wie die PS die Signalquelle eines Gradienten findet. Zunächst bewegt sich die PS entlang der Membran, um das nächst stärkere Signal aufzuspüren. Sobald die PS das stärkste Signal – die grösste Menge des Signalstoffes im Gradienten – festgestellt hat, bleibt sie stehen. An diesem Ort bildet die PS nun eine Ausstülpung der Zelle aus, die in Richtung der Signalquelle weiter wächst. Natürlicherweise wird das Signal von einem Geschlechtspartner produziert und beide Zellen verschmelzen, sobald sie sich gefunden haben.

Modell reduzierte komplexes Gefüge

Um die molekulare Mechanik dieses Vorgangs zu verstehen, griffen die Forschenden auf das Computermodell zurück. «Dieses Modell half uns sehr, die Komplexität der PS und des Prozesses auf wenige unerlässliche Einzelteile zu reduzieren», sagt Björn Hegemann, Erstautor einer Studie, die in der Fachzeitschrift Development Cell erschien.

Zu diesen essentiellen Einzelteilen der Maschinerie zählen ein Rezeptor, der das Signal aufnimmt und weiterleitet. Weiter gehören dazu das Protein Cdc42, das den Rezeptor der Membran entlang führt, und das Protein Cdc24, welches die Aktivität von Cdc42 reguliert. «Man könnte den Rezeptor als die Nase, Cdc42 als das Rad der Maschinerie und Cdc24 als deren Bremse bezeichnen», so Hegemann.

Solange sich die PS auf der Zellmembran bewegt und nach einem stärkeren chemischen Signal sucht, sind nur wenige Moleküle des Bremsproteins Cdc24 in der Maschinerie vorhanden. Hat sie die Maximalkonzentration des Signals gefunden, ordert sie zusätzliche Cdc24-Moleküle, die im Zellkern gelagert werden, zum Komplex. Je mehr davon an die PS-Maschine anlagern, desto langsamer wird sie. Aber erst wenn ein gewisser Grenzwert von Cdc24 überschritten wird, bleibt die PS ganz stehen und beginnt die Zellausstülpung auszubilden.

Wichtiger Grundstein

«Die Bewegung der Polarity site haben wir zuerst mit dem Fluoreszenzmikroskop beobachtet. Dann haben wir diese Bewegung im Computer simuliert und dadurch eine Hypothese entwickelt, wie die Bewegung kontrolliert werden könnte. Diese Hypothese konnten wir dann experimentell durch Mutationen und mit dem Fluoreszenzmikroskop bestätigen», freut sich Hegemann über die neuen Erkenntnisse. Das relativ einfache Computermodell habe eine tolle Basis gelegt für die Planung der Experimente.

Im Modell hätten sie die Komponenten sehr rasch ändern können und so ohne Experimente erkannt, was wichtig sei. Das habe die Studie vereinfacht, da man nicht alles experimentell habe testen müssen.

Hegemann geht davon, dass nicht nur in Hefezellen ein solches Multifunktionstool wie die Polarity Site zum Einsatz kommt. Ähnliches Verhalten einer PS wurden auch in der Spalthefe (S. pombe) und im Fadenwurm (C. elegans) beobachtet, ohne das jedoch eine molekulare Erklärung dafür gefunden wurde. Diese konnten nun die ETH-Forschenden liefern und erstmals im Detail erklären, wie Zellen einen Duftstoff-Gradienten finden können.

Diese Arbeit legt einen wichtigen Grundstein für weitere Studien zur räumlichen Signalwahrnehmung von Zellen der Hefe aber auch des Menschen. Direkte medizinische Anwendungen gibt es laut Hegemann derzeit nicht: «In ferner Zukunft kann diese Arbeit durchaus auch der Allgemeinheit nützen. Im Moment stellt sie hauptsächlich einen wichtigen Erkenntnisgewinn in der Grundlagenforschung dar.»

Originalpublikation

Hegemann B, Unger M, Lee SS, Stoffel-Studer I, van den Heuvel J, Pelet S, Koeppl H, Peter M. A Cellular System for Spatial Signal Decoding in Chemical Gradients. Developmental Cell, Volume 35, Issue 4, 23 November 2015, Pages 458–470. DOI: 10.1016/j.devcel.2015.10.013

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/12/navigation...

Peter Rüegg | ETH Zürich

Weitere Berichte zu: ETH Fluoreszenzmikroskop Grundstein Hypothese Maschinerie Membran Rezeptor Zelle Zellmembran protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie