Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mütterliche Gene beeinflussen das Altern der Kinder

21.08.2013
Mutationen in der mitochondrialen DNA können den Alterungsprozess der Nachkommen beschleunigen

Wenn Menschen älter werden, lässt nicht nur die Funktion von Organen nach. Auch auf zellulärer Ebene treten zunehmend Schäden auf. Ein Grund dafür ist, dass die Erbsubstanz Fehler anhäuft, die Defekte an den Zellen verursachen.

Dass dabei nicht nur DNA-Schäden eine Rolle spielen, die sich im Laufe des Lebens ansammeln, sondern auch solche, die bereits von der Mutter ererbt wurden, hat nun ein Forscherteam um Nils-Göran Larsson vom Max-Planck-Institut für Biologie des Alterns in Köln nachgewiesen. In einer Studie an Mäusen haben die Wissenschaftler gezeigt, dass Mutationen in der mütterlich vererbten, mitochondrialen Erbsubstanz den Alterungsprozess in den Nachkommen beschleunigen.

Altern ist ein komplexer Prozess, in dessen Verlauf sich in den Geweben, Zellen und Molekülen des Körpers immer mehr Schäden anhäufen – mit schwerwiegenden Folgen: Die Organe büßen ihre Funktionsfähigkeit ein, und das Sterberisiko steigt. Warum manche Menschen schneller altern als andere, hat viele Ursachen und stellt die Wissenschaftler noch vor Rätsel. Von besonderer Bedeutung für das Altern scheinen Schäden zu sein, die in den Mitochondrien – den Kraftwerken der Zelle – auftreten.

„Das Mitochondrium enthält eine eigene DNA, die sogenannte mitochondriale DNA oder mtDNA. Sie ändert sich schneller als die DNA im Zellkern, und dies hat einen erheblichen Einfluss auf den Alterungsprozess“, sagt Nils-Göran Larsson, Direktor am Max-Planck-Institut für Biologie des Alterns in Köln und Wissenschaftler am Karolinska Institut in Stockholm. Gemeinsam mit Lars Olson, der ebenfalls am Karolinska Institut forscht, hat er die aktuelle Studie geleitet.

„Viele Mutationen in den Mitochondrien führen allmählich zu einer Beeinträchtigung der zellulären Energieerzeugung“, sagt Larsson. Entgegen der bisherigen Meinung spielen dabei nicht nur Mutationen eine Rolle, die sich im Laufe des Lebens ansammeln: „Überraschenderweise konnten wir auch zeigen, dass die mitochondriale DNA unserer Mutter unser eigenes Altern zu beeinflussen scheint", sagt der Wissenschaftler. „Wenn wir mtDNA mit Mutationen von unserer Mutter erben, altern wir schneller.“ Die für das Altern verantwortlichen Mutationen liegen also zum Teil bereits von Geburt an vor.

In der Alternsforschung stehen die Mitochondrien bereits seit längerem im Fokus der Forscher. Jedes dieser winizigen Energiekraftwerke ist mit eigenen, ringförmigen DNA-Molekülen ausgestattet. Auf ihnen sind etwa Gene kodiert, die wichtig für die Enzyme der Atmungskette sind. Während die DNA im Zellkern die Gene beider Elternteile trägt, enthält die mitochondriale DNA ausschließlich mütterliche Gene, da Mitochondrien nur über die Eizelle und nicht über die Spermien weitergegeben werden. Weil die zahlreichen DNA-Moleküle in den Mitochondrien einer Zelle unabhängig voneinander mutieren, gelangen sowohl normale als auch beschädigte mtDNA-Moleküle in die nächste Generation.

Wie sich Schäden in der mtDNA auf die Nachkommen auswirken, haben die Forscher im Mausmodell untersucht. Mäuse, die von der Mutter Mutationen in der mtDNA ererbt hatten, starben nicht nur früher als ihre unvorbelasteten Artgenossen, sondern litten auch frühzeitig unter Alterserscheinungen wie reduzierter Körpermasse oder verringerter Fruchtbarkeit bei den Männchen. Darüber hinaus entwickelten diese Nager vermehrt Herzmuskelerkrankungen.

Wie die Wissenschaftler herausgefunden haben, können Mutationen in der mtDNA nicht nur das Altern beschleunigen, sondern auch die Entwicklung beeinflussen: So beobachteten die Forscher bei Mäusen, die zusätzlich zu den ererbten Defekten im Laufe ihres Lebens weitere Mutationen in der mtDNA ansammelten, Missbildungen des Gehirns. Die Forscher schließen daraus, dass sich angeborene und später erworbene Schäden in der mtDNA addieren und schließlich eine kritische Zahl erreichen.

„Unsere Ergebnisse bringen mehr Licht in den Alterungsprozess und deuten darauf hin, dass die Mitochondrien eine zentrale Rolle für das Altern spielen. Sie zeigen auch, dass es wichtig ist, die Anzahl der Mutationen zu reduzieren“, sagt Nils-Göran Larsson. Ob sich die Schäden an der mtDNA etwa durch Änderungen im Lebensstil reduzieren lassen, wollen die Wissenschaftler in zukünftigen Studien untersuchen. An Mäusen und an Fruchtfliegen wollen sie auch erforschen, ob eine verringerte Zahl von Mutationen die Lebensdauer tatsächlich verlängern kann.

Ansprechpartner

Nils-Göran Larsson
Max-Planck-Institut für Biologie des Alterns, Köln
Telefon: +49 221 4788-9771
E-Mail: larsson@­age.mpg.de
Sabine Dzuck
Max-Planck-Institut für Biologie des Alterns, Köln
Telefon: +49 221 3797-0304
E-Mail: sabine.dzuck@­age.mpg.de
Originalveröffentlichung
Jaime M. Ross, James B. Stewart, Erik Hagström, Stefan Brené, Arnaud Mourier, Giuseppe Coppotelli, Christoph Freyer, Marie Lagouge, Barry J. Hoffer, Lars Olson, and Nils-Göran Larsson
Germline mitochondrial DNA mutations aggravate ageing and can impair brain development

Nature, Epub ahead of print: Aug 21, 2013, DOI: 10.1038/nature12474

Nils-Göran Larsson | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7507058/mitochondriale_dna_altern

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie