Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MPI für molekulare Genetik ist deutscher Partner des 1000 Genome-Projekts

24.10.2008
Bundesministerium für Bildung und Forschung fördert Beteiligung der Berliner Wissenschaftler mit insgesamt 4,9 Millionen Euro

99% der Gene sind bei allen Menschen identisch. Nur 1% des gesamten Erbmaterials variiert zwischen verschiedenen Personen. Wissenschaftler interessieren sich jedoch vor allem für die Unterschiede, da diese nach unserem bisherigen Wissen für die individuelle Empfänglichkeit gegenüber Krankheiten, Medikamenten und Umwelteinflüssen verantwortlich sind.

Die Erstellung einer genauen Karte solcher Unterschiede im Erbmaterial verschiedener Individuen ist Ziel des internationalen 1000 Genome-Projekts, das im Januar 2008 gestartet wurde. Im August dieses Jahres wurde das Max-Planck-Institut für molekulare Genetik aus Berlin als neunter und bisher letzter Partner in das internationale Konsortium aufgenommen. Heute konnte die Datenproduktion der Pilotphase des Projektes erfolgreich abgeschlossen werden.

Ermöglicht wurde dies durch Unterstützung des Bundesministeriums für Bildung und Forschung, welches die Beteiligung der Berliner Forscher an dem internationalen Großprojekt im Rahmen des Programms "Integrierte Verbünde der medizinischen Genomforschung NGFN-Plus" mit insgesamt 4,9 Millionen Euro fördert.

Knapp dreizehn Jahre dauerte die Entschlüsselung des Humangenoms. Über 1.000 Forscher aus 40 Ländern waren daran beteiligt, etwa drei Milliarden Basenpaare wurden im Rahmen des Projekts entziffert. Seit Abschluss des Humangenomprojektes im Jahre 2003 hat die Sequenziertechnologie jedoch große Fortschritte gemacht. Inzwischen sind neue Technologien verfügbar, die es erlauben, in kurzer Zeit und zu einem Bruchteil der früheren Kosten das Erbmaterial einzelner Individuen detailliert zu charakterisieren.

Dies ermöglicht die Konzeption und Durchführung von Projekten, die noch vor zwei Jahren unvorstellbar waren. So gründetet sich im Januar 2008 ein internationales Forschungskonsortium von zunächst fünf Partnern, um eine Karte der genetischen Variation des Menschen in bisher nicht erreichter Qualität zu erstellen. Nach der Aufnahme dreier weiterer Partner im Juni ist im August diesen Jahres das Max-Planck-Institut für molekulare Genetik aus Berlin als neunter und bisher letzter Partner in das internationale Konsortium aufgenommen worden.

"Für die deutsche Forschungslandschaft ist es essentiell, sich an internationalen Schlüsselprojekten wie diesem zu beteiligen", betont Professor Hans Lehrach, Direktor am Max-Planck-Institut für molekulare Genetik und Leiter des deutschen Forschungsteams des 1000 Genome-Projekts. "Dadurch gelingt es uns, die Innovations- und Wettbewerbsfähigkeit Deutschlands auf dem Gebiet der krankheitsorientierten Genomforschung zu stärken und in einem Bereich, der sicher enorme Bedeutung für die Medizin der Zukunft haben wird, international an der Spitze zu bleiben."

Ziel des 1000 Genome-Projekts ist es, sämtliche Varianten von Genen in einem Katalog zu erfassen, die mit einer Häufigkeit von mind. 1% im Erbgut der gesamten Menschheit vorkommen. Dafür wollen die Wissenschaftler das Erbgut von mindestens 1000 einzelnen Personen analysieren. Die entsprechenden Proben wurden bei den unterschiedlichsten Volksgruppen gesammelt, unter anderem bei Menschen nord- und westeuropäischer Herkunft in den USA, den Yoruba aus Nigeria, den Massai aus Kenia, bei Japanern aus Tokyo, Chinesen aus Peking und Italienern aus der Toskana. Die Forscher gehen davon aus, dass Kenntnisse über die natürliche Genvariation beim Menschen ihnen in künftigen Projekten mehr über die Rolle der einzelnen Variationen bei der Entstehung von Krankheiten wie Krebs, Diabetes oder Störungen des Herz-Kreislaufsystems verraten.

Der Zeitplan der Wissenschaftler ist ehrgeizig. In nur drei Jahren hoffen sie, ihr Projekt abschließen zu können. In den ersten zehn Monaten des Projektes, der sogenannten Pilotphase, ist untersucht worden, wie oft jedes einzelne Gen sequenziert werden muss - Forscher sprechen von Sequenziertiefe - , um das Auffinden von seltenen Varianten sicher zu stellen. Insgesamt 75 Milliarden Basen mussten die Wissenschaftler um Hans Lehrach in dieser Phase sequenzieren, um für die weitere Teilnahme an dem Projekt zugelassen zu werden. Eine besondere Herausforderung für die Berliner Forscher, die erst im August in das 1000 Genome-Konsortium aufgenommen worden waren und daher nur zwei Monate für die Bewältigung dieser Aufgabe zur Verfügung hatten. Heute konnten sie stolz bekannt geben, dass die erforderliche Anzahl an Proben untersucht und die Ergebnisse fristgerecht in die Datenbank des 1000 Genome-Konsortiums eingespeist worden sind. Bis Ende 2010 schließt sich jetzt die sogenannte Produktionsphase des Projektes an. Etwa 700 Milliarden Basen sollen allein im MPI für molekulare Genetik sequenziert werden - im Gesamtprojekt werden es etwa 20.000 Milliarden Basen. Die Ergebnisse werden in öffentliche Datenbanken eingereicht und stehen so der wissenschaftlichen Fachwelt zur Verfügung.

Kontakt (Pressestelle):

Dr. Patricia Marquardt
Max-Planck-Institut für molekulare Genetik
Ihnestr. 63-73
14195 Berlin
Tel.: +49 30 8413-1716
Fax: +49 30 8413-1671
Email: patricia.marquardt@molgen.mpg.de

Dr. Patricia Marquardt | idw
Weitere Informationen:
http://www.1000genomes.org
http://www.molgen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie