Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MPI für molekulare Genetik ist deutscher Partner des 1000 Genome-Projekts

24.10.2008
Bundesministerium für Bildung und Forschung fördert Beteiligung der Berliner Wissenschaftler mit insgesamt 4,9 Millionen Euro

99% der Gene sind bei allen Menschen identisch. Nur 1% des gesamten Erbmaterials variiert zwischen verschiedenen Personen. Wissenschaftler interessieren sich jedoch vor allem für die Unterschiede, da diese nach unserem bisherigen Wissen für die individuelle Empfänglichkeit gegenüber Krankheiten, Medikamenten und Umwelteinflüssen verantwortlich sind.

Die Erstellung einer genauen Karte solcher Unterschiede im Erbmaterial verschiedener Individuen ist Ziel des internationalen 1000 Genome-Projekts, das im Januar 2008 gestartet wurde. Im August dieses Jahres wurde das Max-Planck-Institut für molekulare Genetik aus Berlin als neunter und bisher letzter Partner in das internationale Konsortium aufgenommen. Heute konnte die Datenproduktion der Pilotphase des Projektes erfolgreich abgeschlossen werden.

Ermöglicht wurde dies durch Unterstützung des Bundesministeriums für Bildung und Forschung, welches die Beteiligung der Berliner Forscher an dem internationalen Großprojekt im Rahmen des Programms "Integrierte Verbünde der medizinischen Genomforschung NGFN-Plus" mit insgesamt 4,9 Millionen Euro fördert.

Knapp dreizehn Jahre dauerte die Entschlüsselung des Humangenoms. Über 1.000 Forscher aus 40 Ländern waren daran beteiligt, etwa drei Milliarden Basenpaare wurden im Rahmen des Projekts entziffert. Seit Abschluss des Humangenomprojektes im Jahre 2003 hat die Sequenziertechnologie jedoch große Fortschritte gemacht. Inzwischen sind neue Technologien verfügbar, die es erlauben, in kurzer Zeit und zu einem Bruchteil der früheren Kosten das Erbmaterial einzelner Individuen detailliert zu charakterisieren.

Dies ermöglicht die Konzeption und Durchführung von Projekten, die noch vor zwei Jahren unvorstellbar waren. So gründetet sich im Januar 2008 ein internationales Forschungskonsortium von zunächst fünf Partnern, um eine Karte der genetischen Variation des Menschen in bisher nicht erreichter Qualität zu erstellen. Nach der Aufnahme dreier weiterer Partner im Juni ist im August diesen Jahres das Max-Planck-Institut für molekulare Genetik aus Berlin als neunter und bisher letzter Partner in das internationale Konsortium aufgenommen worden.

"Für die deutsche Forschungslandschaft ist es essentiell, sich an internationalen Schlüsselprojekten wie diesem zu beteiligen", betont Professor Hans Lehrach, Direktor am Max-Planck-Institut für molekulare Genetik und Leiter des deutschen Forschungsteams des 1000 Genome-Projekts. "Dadurch gelingt es uns, die Innovations- und Wettbewerbsfähigkeit Deutschlands auf dem Gebiet der krankheitsorientierten Genomforschung zu stärken und in einem Bereich, der sicher enorme Bedeutung für die Medizin der Zukunft haben wird, international an der Spitze zu bleiben."

Ziel des 1000 Genome-Projekts ist es, sämtliche Varianten von Genen in einem Katalog zu erfassen, die mit einer Häufigkeit von mind. 1% im Erbgut der gesamten Menschheit vorkommen. Dafür wollen die Wissenschaftler das Erbgut von mindestens 1000 einzelnen Personen analysieren. Die entsprechenden Proben wurden bei den unterschiedlichsten Volksgruppen gesammelt, unter anderem bei Menschen nord- und westeuropäischer Herkunft in den USA, den Yoruba aus Nigeria, den Massai aus Kenia, bei Japanern aus Tokyo, Chinesen aus Peking und Italienern aus der Toskana. Die Forscher gehen davon aus, dass Kenntnisse über die natürliche Genvariation beim Menschen ihnen in künftigen Projekten mehr über die Rolle der einzelnen Variationen bei der Entstehung von Krankheiten wie Krebs, Diabetes oder Störungen des Herz-Kreislaufsystems verraten.

Der Zeitplan der Wissenschaftler ist ehrgeizig. In nur drei Jahren hoffen sie, ihr Projekt abschließen zu können. In den ersten zehn Monaten des Projektes, der sogenannten Pilotphase, ist untersucht worden, wie oft jedes einzelne Gen sequenziert werden muss - Forscher sprechen von Sequenziertiefe - , um das Auffinden von seltenen Varianten sicher zu stellen. Insgesamt 75 Milliarden Basen mussten die Wissenschaftler um Hans Lehrach in dieser Phase sequenzieren, um für die weitere Teilnahme an dem Projekt zugelassen zu werden. Eine besondere Herausforderung für die Berliner Forscher, die erst im August in das 1000 Genome-Konsortium aufgenommen worden waren und daher nur zwei Monate für die Bewältigung dieser Aufgabe zur Verfügung hatten. Heute konnten sie stolz bekannt geben, dass die erforderliche Anzahl an Proben untersucht und die Ergebnisse fristgerecht in die Datenbank des 1000 Genome-Konsortiums eingespeist worden sind. Bis Ende 2010 schließt sich jetzt die sogenannte Produktionsphase des Projektes an. Etwa 700 Milliarden Basen sollen allein im MPI für molekulare Genetik sequenziert werden - im Gesamtprojekt werden es etwa 20.000 Milliarden Basen. Die Ergebnisse werden in öffentliche Datenbanken eingereicht und stehen so der wissenschaftlichen Fachwelt zur Verfügung.

Kontakt (Pressestelle):

Dr. Patricia Marquardt
Max-Planck-Institut für molekulare Genetik
Ihnestr. 63-73
14195 Berlin
Tel.: +49 30 8413-1716
Fax: +49 30 8413-1671
Email: patricia.marquardt@molgen.mpg.de

Dr. Patricia Marquardt | idw
Weitere Informationen:
http://www.1000genomes.org
http://www.molgen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics