Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Motor der Gehirnentwicklung

05.11.2009
Das Protein Myosin trägt nicht nur dazu bei, dass sich Muskeln kontrahieren. Es ist auch für die Verschiebung des Kerns in Nervenstammzellen zuständig. Dies ermöglicht es dem Gehirn zu wachsen

Es ist das faszinierendste aller Organe: das menschliche Gehirn. Wie sich aus einfachen Zellschichten ein komplexes Organ entwickelt, erforscht Wieland Huttner, Direktor am Dresdner Max-Planck-Institut für Molekulare Zellbiologie und Genetik (MPI-CBG).

"Bei diesem Organ gilt: Size matters! - die Größe ist entscheidend". Denn Gehirngröße wird mit Intelligenz in Verbindung gebracht, und das menschliche Gehirn ist um ein Vielfaches größer als das von Säugetieren vergleichbarer Größe. Bei seiner Entwicklung müssen also zunächst sehr viele Zellen gebildet werden. Aus einer einfachen Zellschicht (Epithel) entsteht dann ein komplexes Netzwerk, ein vielschichtiges Gehirngewebe. Einen wichtigen Schritt bei der Gehirnentwicklung haben nun die Zellbiologen in Dresden aufgeklärt. (PNAS, 22. September 2009)

Während der Gehirnentwickung teilen sich neurale Stammzellen in einer bestimmten Zone des Gehirns, der Ventrikularzone. Damit möglichst viele Stammzellen entstehen, muss der Zellkern der neugebildeten neuralen Stammzellen zunächst von der Oberfläche des Gewebes wegwandern, um Platz für weitere Zellteilungen zu schaffen. Dieser "Trick" jedoch reicht nicht für Gehirne von Säugetieren aus, und so ist in der Evolution eine zweite Zellschicht unterhalb der Ventrikularzone entstanden, die Subventrikularzone, in der die aus neuralen Stammzellen hervorgegangenen neuronalen Vorläuferzellen die Nervenzellen der Gehirnrinde bilden.

Wie aber werden die Kerne von neuralen Stamm- und neuronalen Vorläuferzellen dorthin bewegt? Das Team um Huttner kann nun genau erklären, wie das geschieht: Die Evolution scheint das erfolgreiche Konzept der Muskelkontraktion mithilfe der Motorproteine Myosin und Aktin auch dafür zu nutzen, um Kernwanderungen zu ermöglichen.

Die Wissenschaftler standen dabei vor der Herausforderung, ein geeignetes Modell zu finden, um das Cytoskelett, das auch bei der Zellteilung eine wesentliche Rolle spielt, zu manipulieren. Dabei sollte auf keinen Fall die Zellteilung beeinträchtigt werden. "Wir haben es geschafft, das Gehirngewebe eines Mausembryos im Reagenzglas so zu kultivieren, dass die Entwicklung der Hirnrinde wie in der Gebärmutter abläuft", sagt Huttner. "So konnten wir gezielt die Aktivität von Myosin hemmen, ohne dabei den Zellzyklus zu beeinflussen."

Die Experimente zeigten, dass die Zellkerne nur bei ausreichender Aktivität des Motorproteins Myosin II in die richtige Richtung wandern und so eine erhöhte Zahl der Zellteilungen ermöglichen. Interessanterweise ist Myosin für beide Prozesse verantwortlich, für die Wanderung des Kerns neuraler Stammzellen weg von der Gewebeoberfläche und für die Kernwanderung neuronaler Vorläuferzellen in die Subventrikularzone.

Zwei grundlegende Kennzeichen der Entwicklung des zentralen Nervensystems von Säugetieren hängen also von ein und derselben Maschinerie sowie denselben zellbiologischen Prozessen ab: die Anordnung der Zellkerne wie in einem mehrschichtigen Epithel, obwohl die Ventrikularzone einschichtig ist, sowie die Ausbildung der Subventrikularzone, die ganz charakteristisch für das Großhirn bei Säugetieren ist.

Originalveröffentlichung:

Judith Schenk, Michaela Wilsch-Bräuninger, Federico Calegari, Wieland B. Huttner
Myosin II is required for interkinetic nuclear migration of neural progenitors
Proc. Natl. Acad. Sci. U.S.A., 22. September 22, 2009, vol. 106, pp. 16487-16492; doi:10.1073/pnas.0908928106, 2009

Weitere Informationen erhalten Sie von:

Prof. Dr. Wieland Huttner
Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
Tel.: +49 351 210 1500
Fax: +49 351 210 1600
E-Mail: huttner@mpi-cbg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-cbg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften