Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie der morphogenetische bicoid-Gradient im Embryo gebildet wird oder das Ende eines Dogmas

27.01.2009
In allen Lehrbüchern kann man nachlesen, dass der erste entdeckte morphogenetische Gradient dadurch gebildet wird, dass das bicoid-Protein am vorderen Pol des Embryos der Taufliege Drosophila synthetisiert wird und von dort durch Diffusion nach hinten gelangt. Dieses Dogma wird von Wissenschaftlern der Universität Zürich, der Lund University und der Stony Brook University in der neusten Ausgabe von "Development" widerlegt (Volume 136, pp. 605-614).

Morphogenetische Gradienten bilden ein zentrales Konzept der Entwicklungsbiologie, dessen Ursprung mehr als hundert Jahre zurückreicht. Heute werden sie definiert als Substanzen, deren Konzentration mit zunehmender Distanz von einem Referenzpunkt oder einer Referenzlinie monoton abfällt und die, entsprechend ihrer Konzentration, verschiedene Gene aktivieren. Ein morphogenetischer Gradient legt daher im Embryo die Position entlang einer Achse fest.

Zum ersten Mal wurde ein morphogenetischer Gradient erst 1986 nachgewiesen, und zwar für das bicoid-Genprodukt, dessen Konzentration mit der Distanz vom vorderen Pol eines Drosophila-Embryos abnimmt und so im wesentlichen das Schicksal der Zellen bestimmt, die Kopf und Thorax der Drosophila Larve bilden. Damals postulierten Hans Georg Frohnhöfer und Christiane Nüsslein-Volhard (Max-Planck-Institut in Tübingen) aufgrund genetischer und entwicklungsbiologischer Experimente im frühen Embryo einen Gradienten des bicoid-Genprodukts.

Gleichzeitig gelang im Labor von Prof. Markus Noll der erste Nachweis des postulierten Gradienten und zwar in Form von bicoid-mRNA, die im Mikroskop von Stefan Baumgartner, seinem damaligen Doktoranden, im Embryo sichtbar gemacht wurde. Nolls Gruppe zeigte damals auch, dass diese mRNA für ein Protein kodiert, das andere Gene reguliert. Damit war offensichtlich, wie das Produkt des bicoid-Gens als Morphogen wirkt, nämlich indem es in unterschiedlichen Konzentrationen verschiedene Gene aktiviert.

Zwei Jahre später, 1988, haben Wolfgang Driever und Nüsslein-Volhard einen Gradienten für das bicoid-Protein im Embryo nachgewiesen. Dabei postulierten sie, dass die für das bicoid-Protein kodierende mRNA strikt am vorderen Pol des Embryos lokalisiert bleibt, obschon dies der zwei Jahre zuvor in derselben Zeitschrift von Nolls Gruppe publizierten Evidenz widersprach. Nach der Vorstellung von Driever und Nüsslein-Volhard entstand der Gradient des bicoid-Proteins dadurch, dass die am vorderen Pol lokalisierte bicoid-mRNA in Protein übersetzt wurde, das nach hinten diffundierte und so ein Konzentrationsgefälle bildete. Dieses Modell wurde seither in allen entwicklungsbiologischen Lehrbüchern wie ein Dogma gelehrt.

Modell endgültig widerlegt

In der neusten Ausgabe von "Development" haben nun die Labors von Stefan Baumgartner und Markus Noll mit den heutigen modernen Methoden ihre Befunde von 1986 bestätigt und zusätzlich gezeigt, dass der Gradient der bicoid-mRNA mit demjenigen des bicoid-Proteins so gut wie identisch ist. Damit wurde das von Driever und Nüsslein-Volhard postulierte und in Lehrbüchern reproduzierte Modell endgültig widerlegt. Der morphogenetische Gradient des bicoid-Proteins bildet sich nicht durch Diffusion des ausschliesslich am vorderen Pol synthetisierten bicoid-Proteins, sondern einfach durch die Synthese des bicoid-Proteins auf der bicoid-mRNA, die dabei als Matrize dient und einen Gradienten bildet.

Nun stellt sich die Frage, wie der bicoid-mRNA-Gradient zustande kommt, da im unbefruchteten Ei die bicoid-mRNA am vorderen Pol lokalisiert ist, wie ebenfalls 1986 in der Publikation von Nolls Gruppe zum ersten Mal gezeigt wurde. Noll und Baumgartner schlagen in der Diskussion ihrer Publikation ein Modell vor, wie dies geschieht. Die bicoid-mRNA wird nach der Befruchtung vom vorderen Pol losgelöst und mit Hilfe des als Staufen bezeichneten Proteins und bekannten Proteinmotoren entlang einem Netzwerk aus Microtubuli in einer dünnen Schicht direkt unter der Oberfläche des Embryos vom vorderen Pol nach hinten transportiert. Da aber die Orientierung der Microtubuli zufällig ist, wird die mRNA, ähnlich wie bei der Diffusion, nur wegen ihres Konzentrationsgefälles langsam nach hinten transportiert (etwa hundert Mal langsamer als bei einem gerichteten Transport entlang Microtubuli). Dieses Modell erklärt auch zum ersten Mal eine Funktion dieses Microtubuli-Netzwerks, nämlich die Bildung des bicoid-mRNA-Gradienten. Sobald die endgültige Form des mRNA-Gradienten erreicht ist, bricht dieses Netzwerk zusammen. Dies geschieht zu Beginn des so genannten synzytialen Blastoderms, wenn die Zellkerne nach 9 Kernteilungen im Innern des Embryos die Oberfläche erreichen. Der bicoid-Gradient entsteht also weder durch Diffusion noch durch das Erreichen eines stationären Zustands, sondern sein Aufbau ist zeitlich perfekt mit der Entwicklung des Embryos synchronisiert. Daher erreicht er seine endgültige Form, wenn das bicoid-Protein, entsprechend seiner Konzentration, verschiedene Gene in den Zellkernen aktivieren muss.

Originalbeitrag:
Alexander Spirov, Khalid Fahmy, Martina Schneider, Erich Frei, Markus Noll, Stefan Baumgartner: Formation of the bicoid morphogen gradient: an mRNA gradient dictates the protein gradient. In: Development, Volume 136, pp. 605-614.
Kontakt:
Prof. Markus Noll, Institut für Molekularbiologie, Universität Zürich
Tel. +41 44 635 31 30
markus.noll@molbio.uzh.ch

Beat Müller | idw
Weitere Informationen:
http://www.uzh.ch/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von Hefe für Demenzerkrankungen lernen
22.02.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Rettender Ritter in goldener Rüstung
22.02.2018 | Exzellenzcluster Entzündungsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics