Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Moos für sauberes Wasser - Abwasserreinigung mit dem PhyscoFilter

25.09.2013
Sauberes Wasser ist ein Menschenrecht – jedoch sind weltweit noch rund 780 Millionen Menschen von dieser Ressource abgeschnitten.

In den Schwellenländern schreitet die Industrialisierung schnell voran: Ungeklärte Abwässer verunreinigen dort das Trinkwasser. Doch auch Kläranlagen filtern längst nicht alle Rückstände heraus.

Das gilt für Pestizide, Medikamente und Hormone. Mit diesen „ungeklärten Fällen“ beschäftigen sich jetzt junge Forscherinnen und Forscher an der Technischen Universität München (TUM). Sie wollen eine verbreitete Moospflanze genetisch verändern – und sie zur kostengünstigen Minikläranlage für Arzneimittelbestandteile und Chemikalien machen.

Das Moos-Projekt ist der diesjährige Beitrag von TUM-Studierenden am internationalen iGEM-Wettbewerb (http://igem.org/About) für Synthetische Biologie, der 2013 zum neunten Mal am Massachusetts Institute of Technology (MIT) ausgetragen wird. Ziel des Wettbewerbs: Organismen sollen gentechnisch modifiziert werden – und mit neuen Eigenschaften einen Mehrwert für die Gesellschaft schaffen.

Abbauen und filtern: Wie wird das Wasser Chemikalien-frei?

Für ihre Experimente verwenden die Studierenden das Kleine Blasenmützenmoos (Physcomitrella patens). Um damit Schadstoffe aus dem Wasser zu entfernen, erprobt das iGEM-Team zwei Ansätze: „Zum einen wollen wir das Moos dazu bringen, gefährliche Substanzen zu harmlosen Stoffen abzubauen (Biodegradation); zum anderen soll es biologisch nicht-abbaubare Substanzen binden und so als Filter arbeiten (Bioakkumulation)“, erklärt Katrin Fischer. Sie studiert im 5. Semester Biochemie.

Für diese beiden Verfahren schleusen die Forscherinnen und Forscher selbst entworfene DNA-Bausteine in das Erbmaterial des Mooses ein. Diese kodieren für Proteine, die Chemikalien aufspalten oder die Schadstoffe binden. Damit ist das Moos unter anderem in der Lage, die weitverbreitete Gruppe der Makrolid-Antibiotika und Hormone aus der Antibabypille abzubauen. Außerdem bindet das Moos das Insektizid DDT. Diese Stoffgruppen können in herkömmlichen Kläranlagen nur unzureichend abgebaut werden.

Sicheres Moos durch genetischen Schalter

„Das Moos Physcomitrella patens ist auch in der Natur ein wichtiger Wasserfilter – und damit der ideale Organismus für unser Projekt“, sagt Fischer. Obwohl die Studenten in ihrem Projekt lediglich zeigen wollen, dass ein Moosfilter funktionieren kann, haben sie den möglichen Einsatz in der Praxis im Blick.

Damit das modifizierte Moos keinesfalls unkontrolliert ins Freiland gelangt, haben die Studierenden eine ebenso simple wie effektive Lösung gefunden: Sie verwenden Moos, das aufgrund einer Mutation keine reifen Sporen bilden kann und bauen zusätzlich einen Selbstzerstörungs-Mechanismus in die Pflanze ein.

„Dieser biologische Schalter reagiert sensibel auf Licht im roten Wellenlängenbereich“, erklärt Jeffery Truong, Masterstudent der Molekularen Biotechnologie und Entwickler des Filters.

„Man könnte dann einen Filter für das Sonnenlicht verwenden, der den Rotlichtanteil gezielt entfernt. Wenn die Pflanze versehentlich freigesetzt wird, ist sie dem Sonnenlicht ausgesetzt, das Licht aller Wellenlängen enthält – das heißt, sie kann nicht überleben.“

Außerdem testet das Team, ob sich der „PhyscoFilter“ in der industriellen Abwasseraufbereitung einsetzen lässt. Dafür haben die Studierenden bereits einen Prototyp entwickelt. Und mit einer Machbarkeitsstudie überprüfen sie, wie aus der vielversprechenden Idee eine unternehmerische Anwendung werden kann.

Der Weg ins Finale

Mit ihrem PhyscoFilter hoffen die TUM-Studierenden auf die Teilnahme im Finale, das vom 1. bis 3. November 2013 in Boston ausgetragen wird. Davor müssen sie jedoch noch eine Hürde nehmen – den europäischen Vorentscheid in Lyon vom 11. bis 13. Oktober 2013. Insgesamt nehmen in diesem Jahr 223 Teams aus der ganzen Welt teil.

Das TUM-iGEM-Team 2013 hat elf Mitglieder, die meisten kommen aus den Studiengängen Biochemie und Molekulare Biotechnologie. Verstärkt wird das Team mit Studierenden der Mathematik und Maschinenbauwesen. Die Jungforscherinnen und -forscher rechnen sich gute Chancen aus – ihr Thema ist nicht nur technisch anspruchsvoll, wie Truong klarstellt:

„Wasser ist unsere wichtigste Lebensgrundlage. Doch die zunehmende Verbreitung von Chemikalien bedroht viele Ökosysteme und die Artenvielfalt. Mit unserem Projekt wollen wir einen Beitrag leisten, diese wertvolle Ressource zu schützen."

Pressemitteilung im Web:
http://www.wzw.tum.de/index.php?id=185&no_cache=1&tx_ttnews[tt_news]=573
Bildmaterial:
http://mediatum.ub.tum.de/node;albpnq-0jyda5-dp8ny1?cfold=1174219&dir=1174219
Webseite des iGEM-Teams:
http://2013.igem.org/Team:TU-Munich
Kontakt:
Prof. Dr. Arne Skerra
Technische Universität München
Lehrstuhl für biologische Chemie
T: +49.8161.71-4351
E: skerra@tum.de
W: http://www.wzw.tum.de/bc
Die Technische Universität München (TUM) ist mit rund 500 Professorinnen und Professoren, 9.000 Mitarbeiterinnen und Mitarbeitern und 32.000 Studierenden eine der führenden technischen Universitäten Europas. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 und 2012 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. In nationalen und internationalen Vergleichsstudien rangiert die TUM jeweils unter den besten Universitäten Deutschlands. Die TUM ist dem Leitbild einer forschungsstarken, unternehmerischen Universität verpflichtet. Weltweit ist die TUM mit einem Campus in Singapur sowie Niederlassungen in Peking (China), Brüssel (Belgien), Kairo (Ägypten), Mumbai (Indien) und São Paulo (Brasilien) vertreten.

Prof. Dr. Arne Skerra | Technische Universität München
Weitere Informationen:
http://www.tum.de
http://igem.org/About

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops