Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Montagefehler in Nano-Turbine entschlüsselt

24.10.2014

Göttinger Wissenschaftler entdecken Protein-Komplex, der an der Entstehung von mitochondrialen Myopathien beteiligt sein könnte. Veröffentlicht im European Molecular Biology Organization (EMBO) Journal.

Forscher unter der Leitung von Prof. Dr. Peter Rehling, Institut für Zellbiochemie der Universitätsmedizin Göttingen (UMG) und Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), haben einen Protein-Komplex namens INAC entdeckt, der für den Zusammenbau des Enzyms ATP-Synthase unentbehrlich ist.


Röntgenstruktur der ATP Synthase in der Membran der Mitochondrien einer Zelle.

Grafik: umg/Rehling

Die ATP-Synthase ist für jede Körperzelle enorm wichtig, da sie der größte Produzent zellulärer Energie ist. Sie ist eine „Maschine im Nano-Maßstab“. Bisher war trotz ihrer Bedeutung wenig darüber bekannt, wie die Zelle diese molekularen Energieproduzenten aus den Einzelteilen zusammensetzt.

In diesem Vorgang liegt jedoch eine Ursache für Funktionsstörungen der ATP-Synthase, und damit für eine Gruppe mitochondrialer Myopathien. Die Erkenntnisse der Wissenschaftler um den Zusammenbau des Enzyms helfen dabei, die Ursachen von mitochondrialen Erkrankungen besser zu verstehen. Die Forschungsergebnisse wurden in der englischen Fachzeitschrift European Molecular Biology Organization (EMBO) Journal veröffentlicht.

Originalpublikation: Lytovchenko O, Naumenko N, Oeljeklaus S, Schmidt B, von der Malsburg K, Deckers M, Warscheid B, van der Laan M, Rehling P. The INA complex facilitates assembly of the peripheral stalk of the mitochondrial F1Fo-ATP synthase. EMBO J. 2014 Aug 1;33(15):1624-38. doi: 10.15252/embj.201488076. Epub 2014 Jun 18.

Mitochondriale Myopathien bezeichnen eine Gruppe von Krankheitsbildern, bei denen vor allem Gewebe mit hohem Energieverbrauch, wie Herz, Muskeln oder das Gehirn, nicht richtig funktionieren. Verantwortlich dafür sind Störungen in den Kraftwerken der Körperzellen, den Mitochondrien. Diese Störungen können entstehen, wenn ein wichtiges Enzym defekt ist, die ATP-Synthase. Das Enzym ATP-Synthase befindet sich in fast allen Lebewesen, von Bakterien bis zum Menschen. Es übernimmt den letzten Schritt bei der Herstellung des wichtigsten Treibstoffs für die Zelle: des ATP.

„Die ATP-Synthase besteht aus vielen verschiedenen Proteinen und lässt sich als Turbinengenerator im Nanomaßstab beschreiben“, sagt Prof. Dr. Peter Rehling. Die ATP-Synthase arbeitet wie eine moderne Wasserturbine, die die Bewegungsenergie des Wassers nutzt, um elektrischen Strom zu erzeugen. Sie ist auch ähnlich aufgebaut: Wie die Wasserturbine besteht die ATP-Synthase aus einem Turbinen-Teil, einem Generator-Element und einer Welle, die Turbine und Generator miteinander verbindet.

Einziger Unterschied: Die ATP-Synthase befindet sich nicht in einem Staudamm, sondern in der inneren Membran der Mitochondrien. So strömen statt Wasser Protonen durch ihre Turbine, von einer Seite der Membran auf die andere. Die Protonen versetzen die Turbine in Drehung. Diese Bewegung überträgt die Welle auf das Generator-Element. Der Generator schließlich nutzt die Bewegungsenergie, um ATP-Moleküle herzustellen.

Da die ATP-Synthase beim Menschen für den Großteil der ATP-Produktion zuständig ist, sind die Konsequenzen mitunter dramatisch, wenn sie nicht richtig arbeitet: Mitochondriale Myopathien können entstehen. Wissenschaftler versuchen daher zu entschlüsseln, welche Faktoren für einen reibungslosen Betrieb des Enzyms wichtig sind.

Zum einen führen Defekte in einzelnen Proteinen, die Teil der ATP-Synthase sind, zu Funktionsstörungen. Zum anderen können bereits beim Zusammenbau des zellulären Turbinengenerators Fehler auftreten. Über die einzelnen Montageschritte ist bisher wenig bekannt. Vor allem war bisher unklar, wie in den Mitochondrien Turbine, Welle und Generator zusammengebaut werden.

„Wir haben uns auf die Suche nach Proteinen gemacht, die man (bisher) nicht mit der Funktion der ATP-Synthase in Verbindung gebracht hat“, sagt Prof. Dr. Peter Rehling. Die Biologen nutzten Hefezellen, da diese sich für derartige Untersuchungen sehr gut eignen und menschlichen Zellen ähneln. Die Wissenschaftler entdeckten zwei Proteine.

„Fehlt den Hefezellen nur eines davon, arbeitet die ATP-Synthase bereits nicht mehr richtig“, sagt Dr. Oleksandr Lytovchenko, Erstautor der Studie und wissenschaftlicher Mitarbeiter am Institut für Zellbiochemie der UMG. Die Forscher fanden heraus, dass die beiden Proteine zusammen einen Komplex bilden. Dieser sitzt, wie die ATP-Synthase, in der inneren Mitochondrienmembran. „Der Komplex ist aber nicht Teil der ATP-Synthase. Daher vermuteten wir, dass er vielmehr für ihren Zusammenbau wichtig ist“, sagt Dr. Lytovchenko.

Zusätzliche Experimente zeigten: In Hefezellen ohne funktionstüchtigen Komplex ist die ATP-Synthase nicht komplett montiert, Generator und Turbine sind nicht miteinander verbunden. Der Komplex ist dafür notwendig, um die Welle als drittes Bauelement zusammenzusetzen. Diese verbindet nicht nur Turbine und Generator, sondern überträgt auch über ihre Drehbewegung die Energie zwischen den beiden Teilen.

Die Göttinger Forscher tauften den Komplex daher „inner membrane as-sembly complex“, kurz INAC. Zellen mit defektem INAC können keine funktions-tüchtige ATP-Synthase mehr bauen, da sie bei der Montage der Welle scheitern. „INAC ist somit ein unverzichtbarer Konstrukteur der ATP-Synthase.

Da wir jetzt einen wichtigen Schritt beim Zusammenbau der ATP-Synthase kennen, können wir die Ursachen von mitochondrialen Erkrankungen besser verstehen. Diesen Ansatz können wir nutzen, um nach neuen Behandlungen für diese Erkrankungen zu suchen“, sagt Prof. Rehling.

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen und Göttinger Zentrum für Molekulare Biowissenschaften
Institut für Zellbiochemie
Prof. Dr. Peter Rehling, Telefon: 0551 / 39-5947
Humboldtallee 23, 37073 Göttingen
Peter.Rehling@medizin.uni-goettingen.de

Stefan Weller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de/

Weitere Berichte zu: ATP-Synthase EMBO Generator Hefezellen Komplex Mitochondrien Myopathien Protonen Turbine Welle Zellbiochemie Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Buche in die Gene schauen - Vollständiges Genom der Rotbuche entschlüsselt
11.12.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Mit den Augen der Biene: Zoologe der Uni Graz entwickelt Verfahren zur Verbesserung dunkler Bilder
11.12.2017 | Karl-Franzens-Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit