Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulares Schutzschild des Aids-Erregers

14.06.2011
Wie sich das HI-Virus vom Immunsystem abschirmt

Der Aids-Erreger hat eine Hülle mit Stacheln. Sie helfen ihm beim Eindringen in die Wirtszelle, bieten aber auch Angriffspunkte für die Abwehrreaktionen unseres Immunsystems. Wie das HI-Virus diese Abwehr ins Leere laufen lässt, haben jetzt vom Schweizerischen Nationalfonds (SNF) unterstützte Forschende herausgefunden.

Der Aids-Erreger HIV sieht aus wie ein Ball, aus dem ungefähr ein Dutzend winzige Stacheln ragen. Diese Stacheln, die Hülleiweisse des Virus, sind gleichzeitig Waffe und Schwachpunkt. Einerseits braucht der Erreger sie, um in die Wirtszellen einzudringen und sich anschliessend dort zu vermehren. Andererseits bieten diese Stacheln eine Angriffsfläche: Die Antikörper, die unser Immunsystem herstellt, um den Aids-Erreger zu neutralisieren, richten sich alle gegen bestimmte Teile der Stacheln.

Katz-und-Maus-Spiel
Um den Antikörpern zu entgehen, verändert sich das Virus im Körper des Patienten laufend. Daher muss das Immunsystem auch immer neu angepasste Antikörper herstellen. «Ein Katz-und-Maus-Spiel», sagt Alexandra Trkola vom Institut für Medizinische Virologie der Universität Zürich. Mit Kollegen vom Universitätsspital Zürich und der ETH Zürich hat ihr Team in einer soeben erschienenen Studie (*) nachgewiesen, dass die Stacheln molekulare Schutzschilde besitzen, die für den Virus besonders wichtige Strukturen vor den Antikörpern abschirmen.

Diese Schutzschilde bestehen aus zwei benachbarten, flexiblen Bereichen eines Hülleiweisses, die sich wie lose Schlingen um die Stacheln winden. Wenn diese Schlingen fehlen, so ist das menschliche Immunsystem problemlos in der Lage, das Virus zu hemmen, wie das Team um Trkola in Versuchen mit gentechnisch veränderten Viren herausgefunden hat.

Völlig anderer Ansatz
Zudem war die genaue Position dieser Schlingen bisher unbekannt– trotz weltweit intensiven Bemühungen, aus kristallisierten Viruseiweissen Informationen zu gewinnen. Die Forschenden um Trkola haben einen völlig anderen Ansatz gewählt: Sie haben den Stachel, der normalerweise aus drei identischen Eiweissen zusammengesetzt ist, mit zwei unterschiedlichen, gentechnisch veränderten Varianten des Hülleneiweisses – eine mit und eine ohne die schützenden Schlingen – rekonstruiert und so nachweisen können, dass die schützenden Schlingen bis zum Nachbareiweiss reichen.

«Das liefert uns einen besseren Anhaltspunkt, wo sich die Schlingen befinden», sagt Trkola. Das Wissen um die genaue Position der Schutzschilde ist wichtig im Hinblick auf die Entwicklung eines Impfstoffes, mit dem man der Erkrankung an Aids vorbeugen könnte. «Doch der Weg dahin ist noch sehr weit», sagt Trkola.

(*) Peter Rusert, Anders Krarup, Carsten Magnus, Oliver F. Brandenberg, Jacqueline Weber, Anna-Katharina Ehlert, Roland R. Regoes, Huldrych F. Günthard and Alexandra Trkola (2011). Interaction of the gp120 V1V2 loop with a neighboring gp120 unit shields the HIV envelope trimer against cross-neutralizing antibodies. Journal of Experimental Medicine online. doi: 10.1084/jem.20110196

(als PDF beim SNF erhältlich; E-Mail: pri@snf.ch)

Kontakt
Prof. Alexandra Trkola
Institut für Medizinische Virologie
Universität Zürich
Winterthurerstrasse 190
8057 Zürich
Tel.: +41 (0)44 634 53 80
E-Mail: trkola.alexandra@virology.uzh.ch

Presse- und Informationsdienst SNF | idw
Weitere Informationen:
http://www.snf.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie