Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein molekulares Kuckucksei enttarnen - Zwei virale Merkmale lösen Immunantwort aus

06.07.2009
Der menschliche Körper muss sich ständig gegen Bakterien und Viren verteidigen.

Zwar ist das Immunsystem auf solche Attacken gut vorbereitet: Sensoren in den Zellen identifizieren eindringende Bakterien und leiten daraufhin ein gezieltes Abwehrprogramm ein.

Allerdings erschweren Viren dem Immunsystem die Erkennung, da diese nur ihre nackte Erbinformation in die Zellen schleusen. Nun sind Wissenschaftler um Dr. Simon Rothenfusser vom Klinikum der Universität München einem Mechanismus auf die Spur gekommen, mit dessen Hilfe Sensoren in der Zelle virale Erreger dennoch aufspüren können.

Die Forscher fanden heraus, dass virales Genmaterial zwei unterschiedliche Strukturmerkmale besitzt, die von einem Immunsensor erkannt werden. In der Studie kamen rein synthetisch hergestellte Imitate viralen Erbmaterials zum Einsatz, dessen Herstellung dem Team um Rothenfusser in Zusammenarbeit mit einer Biotech-Firma gelang. Die Ergebnisse sollen nun helfen, neuartige Therapien gegen Viren zu entwickeln - wie auch gegen Tumorleiden. (PNAS online, 3. Juli 2009).

Die alljährliche Grippewelle im Winter zeigt eines ganz besonders deutlich: Den Angriffen von Viren ist der Mensch immer noch relativ schutzlos ausgeliefert. Meist gelingt es dem Körper erst nach einer mehr oder weniger schweren Krankheitsphase, sich gegen den Eindringling zu wehren und die Krankheit zu überwinden. Diese Erreger sind für die Körperabwehr so schwer zu fassen, weil sie - anders als Bakterien - ihre spezifischen Oberflächenmerkmale, die von Immunsensoren des Körpers erkannt werden, abstreifen können. Viren sind so etwas wie mikroskopisch kleine Freibeuter: Sie lassen beim Eindringen in die Zelle ihre Hüll- und Kapselstrukturen zurück und schleusen nur ihre nackte Erbinformation, die DNA oder RNA, in die Körperzellen ein.

"Die genetischen Informationen des Menschen und der Viren sind in ihrer Struktur fast oder ganz identisch aufgebaut", erklärt Simon Rothenfusser, der die Arbeitsgruppe "Intrazelluläre Immunität" an der Abteilung Klinische Pharmakologie der Medizinischen Klinik Innenstadt leitet. "Viren können ihre RNA-Moleküle daher in einer Zelle wie ein Kuckucksei deponieren. Erkennt die Zelle die subtilen Besonderheiten des fremden Materials nicht, liest sie in der Folge die Gene des Virus wie ihre eigenen ab und produziert so ständig neue Virusnachkommen." Wenn der Körper die virale Erbinformation nicht als fremdes Material erkennt, können die wirksamen Abwehrprogramme des Immunsystems aber nicht aktiviert werden, die die Vermehrung und Verbreitung der Eindringlinge meist erfolgreich unterbinden.

In ihrer neuen Arbeit konnte das Team um Rothenfusser nun zeigen, anhand welcher Merkmale ein im Zellinneren gelegener Immunsensor virale RNA erfolgreich von zelleigener RNA unterscheiden kann. Dieser molekulare Sensor namens RIG-I (oder "retinoid acid inducible gene I") hat sich als wesentlicher Faktor bei der Abwehr des Grippevirus und des Erregers der Hepatitis C erwiesen. Er besitzt die Fähigkeit, in die Zelle eingedrungene virale RNA zu erkennen und löst daraufhin eine Abwehrreaktion aus, die das Virus heftig attackiert. Um diese Aufgabe zu leisten, muss das Virus zwei von der Sequenz der RNA unabhängige Struktureigenschaften besitzen, fand die Gruppe um Rothenfusser in Zusammenarbeit mit Professor Karl-Peter Hopfner vom Genzentrum der LMU jetzt heraus.

Erstens muss das RNA-Molekül an einem Ende, dem sogenannten 5'-Ende, eine frei zugängliche chemische Variation besitzen: das 5'-Triphosphat. Zweitens muss die Virus-RNA über mindestens sieben bis zehn aufeinanderfolgende Basen, das sind die Grundbausteine des Erbmaterials, eine doppelsträngige Struktur ausbilden. Die Kombination beider Eigenschaften kommen bei der zelleigenen RNA im Zytoplasma nicht vor und sind so eindeutige Erkennungsmerkmale. Um die verschiedenen Virusmerkmale zu erkennen, sind zwei unterschiedliche Bereiche von RIG-I zuständig, wie die Untersuchungen der Forscher ergaben. "Wir nehmen an, dass RIG-I die Informationen über beide Merkmale integriert und erst dann eine antivirale Abwehrreaktion auslöst", sagt Dr. Schmidt, Mitarbeiter von Dr. Rothenfusser und Erstautor der Veröffentlichung. Zwar gibt es Viren, die entweder das eine oder das andere Merkmal nicht aufweisen und so schwer zu identifizieren sind. Sind aber beide Besonderheiten vorhanden, kann RIG-I das Virus eindeutig "entlarven".

Somit ist es den Forschern gelungen, ein Profil viraler RNA zu definieren, das ausreichend für die Aktivierung von RIG-I ist. Die getrennte Untersuchung der beiden Virusmerkmale gelang ihnen, weil sie durch Zusammenarbeit mit der Biotech-Firma Eurogentec erstmals vollständig synthetisch hergestellte und somit exakt definierte 5'-Triphosphat-RNA zur Verfügung hatten, die keinerlei Verunreinigungen enthielt. Auf herkömmlichem Weg mithilfe von Enzymen hergestelltes 5'-Triphosphat zeigt dagegen charakteristische Verunreinigungen mit nicht kontrollierbaren RNA-Stücken, die häufig zu widersprüchlichen Ergebnissen führten. Die neuen Erkenntnisse könnten es in Zukunft also auch erlauben, vollständig synthetische Imitate von Viren-RNA herzustellen, um so möglicherweise bei der Entwicklung von Medikamenten das Immunsystem gezielt stimulieren. "Wir hoffen, auf diese Weise neue therapeutische Ansätze zur Behandlung von Tumoren und chronischen Virusinfektionen zu finden", so Rothenfusser.

Eine mögliche Anwendung ist, auf synthetischem Weg RNA-Moleküle herzustellen, die sowohl doppelsträngige Abschnitte als auch ein modifiziertes 5'-Triphosphat enthalten. Diese Moleküle können so gestaltet werden, dass sie gleichzeitig in der Lage sind, über den Mechanismus der RNA-Interferenz zelleigene Gene auszuschalten und eine Virus-RNA zu imitieren - so dass sie über RIG-I eine Antwort des Immunsystem provozieren. "Dieser neue Ansatz ließ sich im Tiermodell bereits erfolgreich zur Therapie von Melanomen, also bösartigem Hautkrebs, einsetzen", berichtet Rothenfusser. In Zukunft wollen die Forscher den neuartigen Ansatz in seinen Anwendungsmöglichkeiten weiter untersuchen. (CA/suwe)

Publikation:
"5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I";
Andreas Schmidt, Tobias Schwerd, Wolfgang Hamm, Johannes C. Hellmuth, Sheng Cui, Michael Wenzel, Franziska S. Hoffmann, Marie-Cecile Michallet, Robert Besch, Karl-Peter Hopfner, Stefan Endres, Simon Rothenfusser;
Proceedings of the National Academy of Sciences USA (PNAS) online,
3. Juli 2009;
DOI: 10.1073_pnas.0900971106
Ansprechpartner:
PD Dr. Simon Rothenfusser
Medizinische Klinik Innenstadt
Abteilung für Klinische Pharmakologie
Tel.: 089 / 5160 - 7331
Fax: 089 / 5160 - 7330
E-mail: Simon.rothenfusser@med.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.klinische-pharmakologie.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Vom künstlichen Hüftgelenk bis zum Fahrradsattel
21.02.2018 | Frankfurt University of Applied Sciences

nachricht Der „heilige Gral“ der Peptidchemie: Neue Strategie macht Peptid-Wirkstoffe oral verfügbar
21.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Strategie zur Kupferreduktion im Pflanzenschutz entwickelt

21.02.2018 | Agrar- Forstwissenschaften

Vom künstlichen Hüftgelenk bis zum Fahrradsattel

21.02.2018 | Biowissenschaften Chemie

Erste Verteidigungslinie gegen Grippe weiter entschlüsselt

21.02.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics