Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulares Daumenkino: Momentaufnahmen aus dem Inneren der Zelle

18.03.2016

Forscher beobachten, wie sich die Struktur der RNA-Polymerase bei der Arbeit verändert

Einem Forschungsteam um den Braunschweiger Physikochemiker Prof. Philip Tinnefeld und der Biochemikerin Prof. Dina Grohmann ist es gelungen, Veränderungen in der RNA-Polymerase während ihrer Arbeit sichtbar zu machen.


Dreidimensionale Architektur einer RNA Polymerase. Die flexible Einheit der RNA-Polymerase, die verschiedene Konformationen annehmen kann, ist in blau hervorgehoben. Die Position der Fluoreszenzfarbstoffe, über die der mit einem orangen Pfeil angezeigte Abstand in der RNA-Polymerase und damit die Bewegung der flexiblen Einheit gemessen werden kann, ist mit einem grünen und roten Punkt gezeigt. (PCI/TU Braunschweig)


Während ihres Aktivitätszyklus in der Zelle interagiert die RNA Polymerase sowohl mit DNA als auch mit verschiedenen Faktoren. Die damit einhergehenden unterschiedlichen Konformationszustände der RNA-Polymerase konnten über die FRET-Technik mit nanometergenauer Auflösung analysiert werden, sodass ein „molekulares Daumenkino der RNA-Polymerase“ erstellt werden konnte. (PCI/TU Braunschweig)

Im Milliardstel Meter Bereich haben sie dafür Farbstoffe auf zwölf Proteinen platziert, deren Helligkeit sich je nach ihrer Entfernung zueinander verändert. Vergleichbar mit einem Daumenkino, konnte das Forschungsteam mit seinen Aufnahmen außerdem nachweisen, dass die Arbeit der RNA-Polymerase durch verschiedene Faktoren gesteuert und beeinflusst wird.

Ob Bakterium, Pflanze oder Tier – Nur wenige Enzyme sind baugleich in allen lebenden Organismen wiederzufinden. Unter diesen Molekülen befindet sich eine der zentralen Arbeitseinheiten einer Zelle, die RNA-Polymerase.

Ihre Aufgabe ist es, die in der DNA kodierte genetische Information zu lesen und umzuschreiben, die so genannte Transkription. Reguliert und gesteuert wird diese Arbeit durch unterschiedliche Faktoren, deren Einfluss und Wirkung auf die molekulare Übersetzungsmaschine bislang ungeklärt sind. „Es immer noch ein Rätsel, wie dieser hochkonservierte biologische Prozess mit ungeheurer Verlässlichkeit und Kontrolle durch die Transkriptionsfaktoren in den Zellen ablaufen kann“, sagt Prof. Tinnefeld.

Die atomare Aufschlüsselung der RNA-Polymerase-Struktur über Röntgenstrukturanalysen liefert der Wissenschaft sozusagen nur ein Standbild der dynamischen molekularen Maschine. Die so genannten Konformationsänderungen, die einen entscheidenden Schlüssel für die Funktionsweise der hochkomplexen Transkriptionsmaschinerie darstellen, konnten damit jedoch nicht erfasst werden.

Prof. Philip Tinnefeld und seiner Arbeitsgruppe „NanoBioScience“ ist es nun gelungen, die Vermutung von der Veränderung der RNA-Polymerase während ihrer Arbeit zu bestätigen und darüber hinaus auch die Faktoren und deren Wirkungsweise aufzuklären, die sie dabei beeinflussen. Veröffentlicht haben die Wissenschaftlerinnen und Wissenschaftler ihre Ergebnisse im Fachjournal „Proceedings of the National Academy of Sciences“ (PNAS). „Das Verständnis von der Arbeitsweise der RNA-Polymerase, ihrer beeinflussenden Faktoren und deren Wirkungsweise legt die Grundlage für die Aufklärung erblich bedingter Krankheiten sowie die Entwicklung von personalisierter Medizin“, erklärt Prof. Dina Grohmann.

Helligkeit von Farbstoffen zeigte Abstand der Moleküle zueinander

Um einen Einblick in die Funktion der RNA-Polymerase und der sie steuernden Transkriptionsfaktoren unter nahezu unbeeinflussten Bedingungen zu erhalten, hat das Forschungsteam eine Einzelmolekültechnik eingesetzt. Verfolgt haben sie damit bestimmte, relevante Abstände mit nanometergenauer Auflösung durch den gesamten Transkriptionsprozess auf der Polymerase. Dazu wurden der Komplex aus RNA-Polymerase und DNA auf einem Deckglas zusammengesetzt und mit verschiedenen Fluoreszenzfarbstoffen spezifischen Stellen markiert.

In einem als FRET (Förster Resonanz-Energietransfer) bezeichneten Prozess übertragen die beiden Farbstoffe abhängig von ihrem Abstand zueinander Energie. Befinden sie sich in räumlicher Nähe, leuchtet der rote Farbstoff, sind sie weiter auseinander positioniert, leuchtet der grüne Farbstoff stärker. Aus dem Verhältnis der Farbintensitäten lassen sich dann exakte Abstände und Abstandsänderungen auf der RNA-Polymerase quantitativ messen. Auf diese Weise hat das Team tausende einzelner Transkriptionskomplexe untersucht, so dass die Veränderung der RNA-Polymerase in jeder Phase ihrer Aktivität bestimmt werden konnte.

„Im Gegensatz zum Standbild, haben wir mit unserer Arbeit quasi einen molekularen ‚Stop-Motion‘ Film der aktiven RNA-Polymerase erstellt, der im Detail und mit hoher Präzision die hohe Flexibilität der Transkriptionsmaschinerie zeigt“, fasst Prof. Tinnefeld das Forschungsergebnis zusammen.

Zur Arbeitsgruppe „NanoBioScience“

Die Forschungsergebnisse wurden in der Arbeitsgruppe „NanoBioScience“ unter Leitung von Prof. Philip Tinnefeld am Institut für Physikalische und Theoretische Chemie der TU Braunschweig und in Zusammenarbeit mit der Arbeitsgruppe von Prof. Dr. Finn Werner vom Institute of Structural and Molecular Biology des University College London erzielt. Prof. Dr. Dina Grohmann war von 2011 bis 2015 Mitglied der Arbeitsgruppe „NanoBioScience“ und ist gegenwärtig Professorin für Mikrobiologie an der Universität Regensburg. Gefördert wurde die Forschungsarbeit durch einen Starting Grant des European Research Council (ERC), die Volkswagenstiftung, die Deutsche Forschungsgemeinschaft sowie durch die German-Israel-Foundation. Die Arbeitsgruppe „NanoBioScience“ von Prof. Philip Tinnefeld ist Mitglied des Braunschweig Integrated Centre of Systems Biology (BRICS) und des Laboratory for Emerging Nanometrology (LENA) der TU Braunschweig.

Zur Publikation

“TFE and Spt4/5 open and close the RNA polymerase clamp during the transcription cycle”, Sarah Schulz, Andreas Gietl, Katherine Smollett, Philip Tinnefeld, Finn Werner and Dina Grohmann. Proceedings of the National Academy of Sciences U.S.A.
(DOI: 10.1073/pnas.1515817113, Erscheinungstermin 15.3.2016)

Weitere Informationen
http://www.pnas.org/content/early/2016/03/14/1515817113.short?rss=1
www.tu-braunschweig.de/pci/research/tinnefeld
http://www.uni-regensburg.de/biologie-vorklinische-medizin/mikrobiologie/team-le...

Kontakt

Prof. Dr. Philip Tinnefeld
Leiter der Arbeitsgruppe NanoBioScience
Institut für Physikalische und Theoretische Chemie
Technische Universität Braunschweig
Hans-Sommer-Strasse 10
38106 Braunschweig
Tel.: 0531/391-5330
E-Mail: p.tinnefeld@tu-braunschweig.de
www.tu-braunschweig.de/pci

Prof. Dr. Dina Grohmann
Lehrstuhl für Mikrobiologie
Institut für Biochemie, Genetik und Mikrobiologie
Universität Regensburg
Universitätsstraße 31
93053 Regensburg
Tel: 0941/943-3147
E-Mail: dina.grohmann@ur.de
www.uni-regensburg.de/biologie-vorklinische-medizin/mikrobiologie

Weitere Informationen:

http://blogs.tu-braunschweig.de/presseinformationen/?p=10130
http://www.pnas.org/content/early/2016/03/14/1515817113.short?rss=1
http://www.tu-braunschweig.de/pci/research/tinnefeld
http://www.uni-regensburg.de/biologie-vorklinische-medizin/mikrobiologie/team-le...

Stephan Nachtigall | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://blogs.tu-braunschweig.de/presseinformationen/?p=10130

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demenz: Neue Substanz verbessert Gehirnfunktion
28.07.2017 | Technische Universität München

nachricht Mit einem Flow-Reaktor umweltschonend Wirkstoffe erzeugen
28.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Zirkuläre Wirtschaft: Neues Wirtschaftsmodell für die chemische Industrie?

28.07.2017 | Studien Analysen

Assistenzsysteme für die Blechumformung

28.07.2017 | Maschinenbau

Ruckartige Bewegung schärft Röntgenpulse

28.07.2017 | Physik Astronomie