Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekularer Zweibeiner

25.04.2012
Kleines Molekül bewegt sich selbständig eine Trasse entlang

In jeder unserer Körperzellen und zwischen den einzelnen Zellen laufen permanent Transportvorgänge über Distanzen von einigen Nanometern bis zu mehreren Millimetern.

Eins dieser zellulären „Frachtunternehmen“ arbeitet mit so genannten molekularen Motoren, die sich an den Filamenten des zellulären Skeletts (Zytoskelett) regelrecht entlang hangeln. Britische Forscher haben sich davon inspirieren lassen. In der Zeitschrift Angewandte Chemie beschreiben sie die Entwicklung einer molekularen „Trasse“, auf der sich ein kleines Molekül wie ein Läufer hin- und herbewegen kann.

David A. Leigh und ein Team von der Universität Edinburgh (Großbritannien) stellten die Trasse aus einem so genannten Oligoethylenimin her. Die Aminogruppen des Strangs stellen die „Trittsteine“ für den molekularen „Läufer“ dar. Der Läufer ist ein kleines Molekül (α-methylen-4-nitrostyrol). Dieses Molekül sieht fast wie ein Strichmännchen aus mit einem aromatischen Kohlenstoffsechsring als Bauch, einer Nitro-Gruppe als Kopf und zwei kurzen Kohlenwasserstoff-Beinen. Mit einem „Bein“ ist es zunächst an den ersten Trittstein der Trasse gebunden. Das „Loslaufen“ des molekularen Läufers beginnt mit einer Umlagerung unter Ringschluss (intramolekulare Michael-Reaktion) – das zweite Bein bindet an den benachbarten Trittstein. Eine zweite Umlagerungsreaktion unter Ringöffnung (retro-Michael-Reaktion) bewirkt dann, dass sich das erste Bein von seinem Trittstein löst. Auf diese Weise kann der molekulare Läufer Schritt um Schritt entlang der Trasse auf Wanderschaft gehen.

Die Sache hat allerdings einen Haken: Alle diese Umlagerungsreaktionen sind Gleichgewichtsreaktionen. Sind die Trittsteine chemisch gleichwertig, schwankt der winzige Läufer hin und her, hebt ein Bein, senkt es wieder, geht einen Schritt vor, einen Schritt wieder zurück, seine Bewegung folgt keiner vorgegebenen Richtung. Aber er schafft im Durchschnitt die erstaunlich hohe Zahl von 530 „Schritten“, bevor er sich vollständig von der Trasse löst. Das ist wesentlich mehr, als natürliche Systeme wie Kinesin-Motorproteine schaffen.

Der kleine Läufer kann sogar einen Job erledigen: An das Ende einer Trasse mit fünf Trittsteinen knüpften die Forscher eine Anthracen-Gruppe. Solange der Läufer am Anfang der Strecke bleibt, fluoresziert diese. Erreicht er jedoch das Anthracen-bestückte Trassenende, kommt es zu einer elektronischen Wechselwirkung zwischen Läufer und Anthracen, die Fluoreszenz wird dadurch „ausgelöscht“. Die Forscher fanden, dass die Intensität der Fluoreszenz nach und nach auf etwa die Hälfte sank. Nach ca. 6,5 Stunden war der Endwert, das heißt der Gleichgewichtszustand zwischen allen möglichen Läuferpositionen erreicht.

Nächstes Ziel des Teams ist die Entwicklung eines Läufers, der unter Verbrauch von „Treibstoff“ gezielt in eine vorgegebene Richtung marschiert und dabei Lasten über längere, verzweigte Trassen transportiert.

Angewandte Chemie: Presseinfo 15/2012

Autor: David A. Leigh, University of Edinburgh (UK), http://www.catenane.net/

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201200822

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften