Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekularer „Schutzengel“ von Muskeln entdeckt

20.02.2014
Einen zellulären Bewacher, der für den Erhalt und die Funktion von Muskeln sorgt, hat das Forschungsteam um Halyna Shcherbata am Göttinger Max-Planck-Institut für biophysikalische Chemie entdeckt.

Wie die Wissenschaftler am Modell der Taufliege zeigen konnten, sind sogenannte mikroRNAs ein wichtiger Regulator des Muskelproteins Dystroglykan. Dieses spielt auch bei der Entstehung von Muskelerkrankungen, sogenannten Muskeldystrophien, eine Schlüsselrolle. Die Erkenntnisse der Forscher könnten dazu beitragen, neue Ansätze zur Behandlung derartiger Krankheiten zu entwickeln.


Mikroskopische Aufnahme eines Taufliegenembryos, in dem der molekulare „Schutzengel“ namens mikroRNA-9a „abgeschaltet“ wurde. Die Muskeln der Fliege (grün), das Muskelprotein Dystroglykan (rot) und Shcherbata
Max-Planck-Institut für biophysikalische Chemie

Wenn Muskeln immer mehr an Masse und Kraft verlieren und sich ihr fortschreitender Schwund nicht aufhalten lässt, lautet die Diagnose: Muskeldystrophie. An diesen chronisch verlaufenden Erkrankungen der Skelettmuskulatur leiden allein in Deutschland etwa 30.000 Menschen. Ihre häufigste Ursache ist ein genetischer Defekt des sogenannten Dystrophin-Dystroglykan-Komplexes in der Membran der Skelettmuskelzellen.

Er verbindet das Zytoskelett der Zelle mit ihrer Umgebung – der sogenannten extrazellulären Matrix. Auch Fliegen entwickeln Muskeldystrophien, wenn sie denselben genetischen Defekt aufweisen. Frühere Experimente der Forschungsgruppenleiterin Halyna Shcherbata vom Max-Planck-Institut für biophysikalische Chemie konnten dies eindeutig nachweisen. Bereits seit Längerem setzt die Wissenschaftlerin daher erfolgreich die Taufliege Drosophila melanogaster ein, um die Ursachen von Muskeldystrophien zu erforschen.

„Bei betroffenen Patienten scheinen neben dem Dystrophin-Dystroglykan-Komplex nicht zuletzt auch falsch geformte Verbindungen zwischen Sehnen und Muskeln für den Erhalt und die Funktion der Muskulatur eine wichtige Rolle zu spielen,“ erklärt Shcherbata. Die Muskel-Sehnen-Übergänge seien bisher in ihrer Bedeutung für Muskeldystrophien unterschätzt. Um neue Strategien zur Behandlung dieser Krankheiten zu entwickeln, ist es daher wichtig, die molekularen Mechanismen zu verstehen, die die Ausbildung der Muskel-Sehnen-Verbindungen steuern.

Einen molekularen „Schutzengel“ in diesem Prozess hat das Team um die Göttinger Entwicklungsbiologin jetzt in der Fliege identifiziert. Wie es herausfand, stellt dieser Beschützer – mikroRNA-9a (miR-9a) genannt – sicher, dass sich die Muskel-Sehnen-Übergänge normal ausbilden, indem es die Produktion störender Proteine verhindert. „Dystroglykan ist zwar für Muskelzellen unentbehrlich. Aber wenn es in den Sehnenzellen gebildet wird, hat das fatale Folgen,“ berichtet Shcherbata.

„Wird dort das Dystroglykan-Gen fälschlicherweise „angeschaltet“, werden Muskeln und Sehnen nicht richtig verknüpft und in der frühen Entwicklung kann es zum Absterben der Embryonen kommen“. Ursache für solche fehlproduzierten Proteine sind zumeist Fehler beim Ablesen der Gene. Die Entdeckung der Göttinger Wissenschaftler, dass miRNAs ein wichtiger Regulator des Muskelproteins Dystroglykans sind, könnten möglicherweise auch neue Ansätze zur Behandlung von Muskeldystrophien eröffnen.

Wie die Entwicklungsbiologen herausfanden, wacht die miR-9a darüber hinaus noch über weitere Gene, die an der Bildung von Muskelzellen beteiligt sind. Dies fanden die Wissenschaftler mit einem raffinierten Experiment heraus. Dazu aktivierten die Forscher den molekularen „Schutzengel“ dort, wo er in der gesunden Fliege nicht aktiv ist: in embryonalem Gewebe, aus dem sich später auch die Skelettmuskulatur des Insekts entwickelt. Tatsächlich leistete die miR-9a auch am falschen Einsatzort ganze Arbeit – und verhinderte die Entwicklung jeglichen Muskelgewebes. „Wir vermuten daher, dass in der normalen Fliege die miR-9a das Anschalten einer ganzen Reihe störender muskelspezifischer Gene im Muskel-Sehnen-Übergang unterdrückt“, so Andriy Yatsenko, Postdoktorand in der Forschungsgruppe.

Doch wieso besteht überhaupt die Gefahr, dass in der Zelle Gene falsch abgelesen und Proteine produziert werden, die dieser im schlimmsten Fall sogar schaden? Die Antwort liefert ein Blick in die frühe Entwicklung lebender Organismen: Alle Gewebe des Körpers gehen aus den drei Keimblättern hervor: dem Endoderm, dem Ektoderm und später dem Mesoderm. Im Zuge der Bildung von Organen wandern Zellen auch zwischen Keimblättern, müssen aber in dieser fremden Umgebung ihre typischen Eigenschaften und Fähigkeiten als Leber-, Muskel, oder Herzzelle bewahren. Gleichzeitig ist wichtig, dass sie auf die Signale in ihrer neuen Umgebung richtig reagieren. Diese beiden Prozesse müssen kontinuierlich und genau ausbalanciert werden. Shcherbata erläutert: „miRNAs scheinen extrem wichtige Regulatoren zu sein, damit Zellen dieser Balanceakt gelingt. In unserem Fall sind die Sehnenzellen epidermalen Ursprungs, jedoch von mesodermalem Gewebe umgeben. Die miR-9a stellt sicher, dass jede Zelle – ob im Muskel-Sehnen-Übergang oder im umgebenden Gewebe – ihr typisches Repertoire an Proteinen erhält und so ihre Aufgaben erfüllen kann. Die miRNAs verleihen damit biologischen Systemen Stabilität und Robustheit gegenüber Fehlern oder zufälligen Schwankungen.“

Originalpublikation:
A. S. Yatsenko, H. R. Shcherbata: Drosophila miR-9a targets the ECM receptor dystroglycan to canalize myotendinous junction formation. Dev Cell 28, 335-348 (2014).
Kontakt:
PD Dr. Halyna Shcherbata, Max-Planck-Forschungsgruppe Genexpression und Signalwirkung
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1656
E-Mail: halyna.shcherbata@mpibpc.mpg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1304
E-Mail: carmen.rotte@mpibpc.mpg.de
Weitere Informationen:
http://www.mpibpc.mpg.de/de/shcherbata
- Webseite der Max-Planck-Forschungsgruppe Genexpression und Signalwirkung am Max-Planck-Institut für biophysikalische Chemie

Dr. Carmen Rotte | Max-Planck-Institut
Weitere Informationen:
http://www.mpibpc.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie