Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein molekularer Lieferservice

30.08.2013
Die meisten Zellen besitzen kleine haarige Strukturen (Zilien) auf ihrer Oberfläche.

Sie sind für die Bewegung von Zellen verantwortlich (zum Beispiel bei Spermien), sie verarbeiten Signale aus der Umwelt und koordinieren die korrekte Anordnung der inneren Organe. Um korrekt zu funktionieren, müssen Zilien bei der Montage mit den richtigen Bausteinen beliefert werden.


Bausteine für den Zusammenbau eines Ziliums werden von der Basis zur Spitze des Ziliums transportiert. Copyright: Institut Pasteur, Paris

Wissenschaftler am MPI für Biochemie konnten jetzt zeigen, wie der Hauptbaustein Tubulin von zwei Transporthelfern in das Zilium gebracht wird. Die jetzt im Journal Science veröffentlichten Ergebnisse könnten helfen, diese Krankheiten zu verstehen und möglicherweise zu verhindern.

Obwohl Zilien verschiedenste Aufgaben erfüllen, haben sie alle eine ähnliche Struktur: Sie sind nur fünf bis zehn Mikrometer (0,0005 bis 0,001 Zentimeter) lang und befinden sich auf der Oberfläche von eukaryotischen Zellen. Über 600 verschiedene Zilien-Proteine werden im Inneren der Zelle gebildet und dann in das Zilium transportiert.

Störungen in diesem Transportsystem, das Wissenschaftler Intraflagellären Transport (IFT) nennen, können zu Fehlern bei der Montage der Zilien und damit zu Krankheiten mit sowohl geistigen als auch körperlichen Schäden führen. So können defekte Zilien zum Beispiel einen „Situs inversus“ hervorrufen. Bei dieser Krankheit sind die inneren Organe spiegelverkehrt im Körper angeordnet.

Auch wenn lange bekannt war, wie wichtig der intraflagelläre Transport (IFT) für die Zilien und damit für einen funktionierenden Organismus ist, konnten seine Strukturen und Mechanismen bisher nicht aufgeklärt werden. Wissenschaftler der Forschungsgruppe „Intraflagellärer Transport“ um Esben Lorentzen konnten jetzt einen wichtigen Schritt in diesem molekularen Lieferservice aufklären: den Transportmechanismus des Schlüsselproteins Tubulin.

Es ist das häufigste Protein in Zilien und formt ihr Rückgrat. „Wir konnten zeigen, dass die beiden Proteine IFT74 und IFT81 gemeinsam ein Tubulin-Bindemodul bilden“, sagt Sagar Bhogaraju. Unterbrechen die Forscher die Bindung zwischen IFT74/-81 und Tubulin, hat dies schwerwiegende Folgen für die Bildung von Zilien. „Unsere Ergebnisse liefern einen ersten Einblick in die Montage von Zilien auf molekularer Ebene“, sagt der Biochemiker.

Originalpublikation:
Bhogaraju, S., Cajanek L., Fort, C., Blisnick, T., Weber, K., Taschner, M., Mizuno, N., Lamla, S., Bastin, P., Nigg, E. and Lorentzen, E.: Molecular Basis of Tubulin Transport within the Cilium by IFT74 and IFT81, Science, August 30, 2013.

DOI: 10.1126/science.1240985

Kontakt:
Dr. Esben Lorentzen
Strukturbiologie der Zilien
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: lorentze@biochem.mpg.de
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
Weitere Informationen:
http://www.biochem.mpg.de/1890109/074_Lorentzen_IFT
- Link zur Pressemitteilung
http://www.biochem.mpg.de/news/pressroom
- Pressemitteilungen des MPI für Biochemie
http://www.biochem.mpg.de/en/rg/lorentzen
- Webseite der Forschungsgruppe "Intraflagellärer Transport"

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de

Weitere Berichte zu: Biochemie Lieferservice Max-Planck-Institut Organ Protein Tubulin Zilien Zilium

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics