Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekularer Code der Sprachregionen im Gehirn geknackt

29.01.2015

Sprechen und Sprache verstehen sind komplexe Leistungen, bei denen im Gehirn zahlreiche Gebiete zusammenarbeiten.

Der JARA-BRAIN Wissenschaftler Prof. Karl Zilles und ein Team aus Jülich, Aachen, Leipzig und Finnland konnten nun erstmals nachweisen, dass es einen einzigartigen molekularen Fingerabdruck gibt, der die sprachrelevanten Hirnregionen auszeichnet. Der gemeinsame Code definiert sich durch die spezifische Konzentration verschiedener Transmitterrezeptoren, die Schlüsselmoleküle der Signalverarbeitung sind.


Untersuchte Hirnregionen Untersuchte Hirnregionen

Copyright: Forschungszentrum Jülich

Ihre typischen Konzentrationen in den Sprachregionen unterscheiden sich deutlich von denen anderer Regionen, die keine sprachrelevanten Aufgaben wahrnehmen. Die Forschungsergebnisse wurden kürzlich im renommierten Fachmagazin "Cortex" publiziert. (DOI: 10.1016/j.cortex.2014.07.007)

Beim Sprechen und Sprachverständnis arbeiten nicht nur nahe zusammenliegende, sondern auch weit entfernte Gehirnareale zusammen. Laute müssen aufgenommen und Begriffen zugeordnet, Wörter im Satzzusammenhang erfasst werden und vieles mehr. Diese Informationen werden über Nervenfasern weitergeleitet und in den beteiligten Sprachregionen verarbeitet.

"Bisher war die molekulare Grundlage dieser Verarbeitungsprozesse nicht bekannt", erläutert der Neuroanatom Karl Zilles. Ihm und seinem Team gelang es, den molekularen Code zu bestimmen, indem sie in einem aufwändigen Prozess Tausende von hauchdünnen post mortem Hirnschnitten analysierten. Im Fokus des wissenschaftlichen Interesses standen dabei fünfzehn verschiedene Transmitterrezeptoren, die bei der Signalübertragung im Gehirn eine große Rolle spielen.

Transmitterrezeptoren sind komplexe Eiweißmoleküle, die als "Andockstationen" für Botenstoffe wie etwa Glutamat, GABA, Acetylcholin, Noradrenalin, Serotonin und Dopamin im Gehirn dienen. Sie sitzen in der äußeren Hülle ("Membran") der Nervenzellen. Mit der quantitativen Rezeptorautoradiographie machten die Forscher die Verteilung und Konzentration dieser Rezeptoren in den acht untersuchten Hirnarealen für Sprachverständnis und in zahlreichen anderen, nicht-sprachrelevanten Arealen sichtbar.

"Bei unseren Untersuchungen erhielten wir eine sehr genaue Vorstellung davon, in welcher Konzentration die Rezeptoren an welcher Stelle des jeweiligen Hirnareals vorlagen", so Zilles. Um zu sehen, welche Areale miteinander in Verbindung stehen, verglichen die Forscherinnen und Forscher anschließend die Rezeptorausstattung der unterschiedlichen Regionen mit Hilfe eines statistischen Verfahrens, der hierarchischen Clusteranalyse.

Damit lassen sich in großen Datenmengen Gruppen identifizieren, die Gemeinsamkeiten haben – sogenannte Cluster. Das Ergebnis: "Die molekularen Fingerabdrücke der sprachrelevanten Areale ähnelten sich, so dass sie ein Cluster bilden. Dieses unterscheidet sich deutlich von Clustern anderer Hirnregionen, die beispielsweise sensorische Signale aus den Augen, Ohren oder den Tastorganen weiterverarbeiten."

Bei der Clusteranalyse zeigte sich außerdem, dass das Sprachcluster in der linken Hemisphäre mehr Regionen umfasst als in der rechten. Dies entspricht auf molekularer Basis der klinischen Erfahrung, dass die linke Hemisphäre beim Sprechen und Sprachverständnis dominiert.

Weitere Abbildung:
Verteilung von 15 verschiedenen Transmitterrezeptoren in der Hirnrinde des Areals 45d der Broca‘schen Sprachregion des Menschen (PDF, 123 kB)

Weitere Informationen:

Institut für Neurowissenschaften und Medizin, Bereich Strukturelle und Funktionelle Organisation des Gehirns (INM-1)

Uniklinik Aachen - Klinik für Psychiatrie, Psychotherapie und Psychodynamik

JARA-BRAIN

Ansprechpartner:

Prof. Karl Zilles, JARA-Senior Professor of Brain Research, Institut für Neurowissenschaften und Medizin, Bereich Strukturelle und Funktionelle Organisation des Gehirns (INM-1), Forschungszentrum Jülich
und
Klinik für Psychiatrie, Psychotherapie und Psychosomatik, RWTH Aachen,
Tel. 02461 61-3015
E-Mail: k.zilles@fz-juelich.de

Pressekontakt:

Dr. Barbara Schunk
Tel. 02461 61-8031
E-Mail: b.schunk@fz-juelich.de

Annette Stettien
Tel. 02461 61-2388
E-Mail: a.stettien@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie