Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein molekularer Aktenvernichter für RNA - Max-Planck-Forscher entschlüsseln RNA-Abbau-Maschinerie

06.02.2013
Ähnlich einem Aktenvernichter zum Zerkleinern von nicht mehr benötigten oder potenziell gefährlichen Dokumenten verwenden Zellen molekulare Maschinen, die überflüssige oder defekte Makromoleküle abbauen.
Forscher am MPI für Biochemie haben jetzt die Struktur und Funktionsweise des Exosoms entschlüsselt, das Ribonukleinsäuren (RNA) in Eukaryoten abbaut. RNA-Moleküle liegen in allen Zellen in großer Menge vor und ermöglichen es zum Beispiel, die in den Genen gespeicherte Information in Proteine zu übersetzen. Die Ergebnisse der Forscher zeigen, dass die Struktur und die Funktionsweise des Exosoms in allen Lebensformen weitgehend gleich sind. Die Studie wurde jetzt in Nature veröffentlicht.

Wenn bei der Herstellung von RNA-Molekülen Fehler auftreten oder RNA sich unkontrolliert anhäuft, kann dies die Zelle schädigen. Deshalb ist die Beseitigung von defekter oder nicht mehr benötigter RNA ein wichtiger Schritt für den Stoffwechsel einer Zelle. Das Exosom zerschneidet als Multi-Proteinkomplex RNA in kleine Stücke und spielt damit eine Schlüsselrolle im Abbau-Prozess. Zusätzlich wandelt es bestimmte RNA-Moleküle in ihre reife Form um. Die molekularen Mechanismen, mit denen das Exosom all diese Funktionen erfüllen kann, waren bisher noch wenig verstanden.

Allgegenwärtiger molekularer Aktenvernichter
Debora Makino, Wissenschaftlerin in der Forschungsabteilung „Zelluläre Strukturbiologie“ um Elena Conti, hat jetzt auf atomarem Level ein Bild des kompletten Exosoms aus Eukaryoten erstellt - zusammen mit einem gebundenen RNA Molekül. Die Struktur dieses Komplexes ermöglicht es den Wissenschaftlern zu verstehen, wie das Exosom im Detail arbeitet.
„Es handelt sich um eine sehr aufwändige molekulare Maschine: der Exosom-Komplex bildet eine hohles Fass aus neun unterschiedlichen Proteinen. Durch einen Kanal in seinem Inneren werden die RNA-Moleküle so geführt, dass sie schließlich zu einem zehnten Protein gelangen, welches als katalytische Untereinheit die RNA in Stücke schneidet“, beschreibt Debora Makino die Funktionsweise. Das Fass ist essentiell für den Abbau-Prozess, weil es dazu beiträgt, dass die RNA entfaltet und für die Zerkleinerung vorbereitet wird. „Zellen, denen eines dieser zehn Proteine fehlt, sind nicht überlebensfähig. Das zeigt, dass nicht nur die katalytische Untereinheit, sondern auch das gesamte Fass für die Funktion des Exosoms essentiell sind“, erklärt Makino.

Das Anbinden von RNA und Führen der RNA durch den Kanal des Exosoms geschieht in Eukaryoten in ähnlicher Weise wie in Bakterien und Archaebakterien, welche die Wissenschaftler bereits in früheren Arbeiten strukturell untersucht haben. „Obwohl der eigentliche Abbau chemisch sehr unterschiedlich in Eukaryoten und Bakterien beziehungsweise Archaebakterien abläuft, wird die RNA auf gleiche Weise durch den Kanal befördert. Vergleichbar ist der Mechanismus auch mit dem des Proteasoms, einem Komplex für den Protein-Abbau“, sagt Elena Conti. In Zukunft wollen die Wissenschaftler verstehen, wie das Exosom gezielt zu den RNA-Molekülen gelangt, welche für den Abbau vorgesehen sind, und wie es in den unterschiedlichen Bereichen der Zelle reguliert wird.

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de/news/pressroom/index.html
http://www.biochem.mpg.de/conti

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie