Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein molekularer Aktenvernichter für RNA - Max-Planck-Forscher entschlüsseln RNA-Abbau-Maschinerie

06.02.2013
Ähnlich einem Aktenvernichter zum Zerkleinern von nicht mehr benötigten oder potenziell gefährlichen Dokumenten verwenden Zellen molekulare Maschinen, die überflüssige oder defekte Makromoleküle abbauen.
Forscher am MPI für Biochemie haben jetzt die Struktur und Funktionsweise des Exosoms entschlüsselt, das Ribonukleinsäuren (RNA) in Eukaryoten abbaut. RNA-Moleküle liegen in allen Zellen in großer Menge vor und ermöglichen es zum Beispiel, die in den Genen gespeicherte Information in Proteine zu übersetzen. Die Ergebnisse der Forscher zeigen, dass die Struktur und die Funktionsweise des Exosoms in allen Lebensformen weitgehend gleich sind. Die Studie wurde jetzt in Nature veröffentlicht.

Wenn bei der Herstellung von RNA-Molekülen Fehler auftreten oder RNA sich unkontrolliert anhäuft, kann dies die Zelle schädigen. Deshalb ist die Beseitigung von defekter oder nicht mehr benötigter RNA ein wichtiger Schritt für den Stoffwechsel einer Zelle. Das Exosom zerschneidet als Multi-Proteinkomplex RNA in kleine Stücke und spielt damit eine Schlüsselrolle im Abbau-Prozess. Zusätzlich wandelt es bestimmte RNA-Moleküle in ihre reife Form um. Die molekularen Mechanismen, mit denen das Exosom all diese Funktionen erfüllen kann, waren bisher noch wenig verstanden.

Allgegenwärtiger molekularer Aktenvernichter
Debora Makino, Wissenschaftlerin in der Forschungsabteilung „Zelluläre Strukturbiologie“ um Elena Conti, hat jetzt auf atomarem Level ein Bild des kompletten Exosoms aus Eukaryoten erstellt - zusammen mit einem gebundenen RNA Molekül. Die Struktur dieses Komplexes ermöglicht es den Wissenschaftlern zu verstehen, wie das Exosom im Detail arbeitet.
„Es handelt sich um eine sehr aufwändige molekulare Maschine: der Exosom-Komplex bildet eine hohles Fass aus neun unterschiedlichen Proteinen. Durch einen Kanal in seinem Inneren werden die RNA-Moleküle so geführt, dass sie schließlich zu einem zehnten Protein gelangen, welches als katalytische Untereinheit die RNA in Stücke schneidet“, beschreibt Debora Makino die Funktionsweise. Das Fass ist essentiell für den Abbau-Prozess, weil es dazu beiträgt, dass die RNA entfaltet und für die Zerkleinerung vorbereitet wird. „Zellen, denen eines dieser zehn Proteine fehlt, sind nicht überlebensfähig. Das zeigt, dass nicht nur die katalytische Untereinheit, sondern auch das gesamte Fass für die Funktion des Exosoms essentiell sind“, erklärt Makino.

Das Anbinden von RNA und Führen der RNA durch den Kanal des Exosoms geschieht in Eukaryoten in ähnlicher Weise wie in Bakterien und Archaebakterien, welche die Wissenschaftler bereits in früheren Arbeiten strukturell untersucht haben. „Obwohl der eigentliche Abbau chemisch sehr unterschiedlich in Eukaryoten und Bakterien beziehungsweise Archaebakterien abläuft, wird die RNA auf gleiche Weise durch den Kanal befördert. Vergleichbar ist der Mechanismus auch mit dem des Proteasoms, einem Komplex für den Protein-Abbau“, sagt Elena Conti. In Zukunft wollen die Wissenschaftler verstehen, wie das Exosom gezielt zu den RNA-Molekülen gelangt, welche für den Abbau vorgesehen sind, und wie es in den unterschiedlichen Bereichen der Zelle reguliert wird.

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de/news/pressroom/index.html
http://www.biochem.mpg.de/conti

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE