Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekularer Affe fädelt die Aktivierung von X-Chromosomen ein

26.07.2013
Protein verbiegt die RNA, damit aktivierende Faktoren daran binden können

X-Chromosomen sind ein ganz besonderer Teil des Erbguts. Ihre Anzahl unterscheidet sich bei Männern und Frauen. Um zwischen den Geschlechtern ein Gleichgewicht herzustellen, wird bei Frauen eines von zwei X-Chromosomen stillgelegt.


Das Protein MLE greift den RNA-Strang, wie ein Affe eine Liane packt. Eine Seite dient als einfacher Anker (Füße), während die andere gleichzeitig den Strang verbiegen kann. Das verbraucht Energie (Banane). Die verbogene RNA kann von weiteren Proteinen gebunden werden und führt so zu einer Aktivierung der X-Chromosomen in männlichen Fliegen.

© MPI f. Immunbiologie und Epigenetik/Ibrahim Ilik, Tugce Aktas

Fliegen machen das Gegenteil: Bei den Männchen wird das einzig vorhandene X-Chromosom stark aktiviert, um die Abwesenheit des zweiten X-Chromosoms auszugleichen. Forscher des Max-Planck-Instituts für Immunbiologie und Epigenetik in Freiburg haben jetzt gezeigt, wie an der Aktivierung beteiligte RNA-Moleküle und Proteine zueinander finden. Ähnlich einem Affen, der eine Liane mit Händen und Füßen hält, bindet eines der Proteine an die RNA. Dann verbiegt es die molekulare Liane mit den Händen und erzeugt so eine Bindestelle für RNA und Protein.

Noch vor wenigen Jahren wurden sie als genetischer Müll abgetan: DNA-Bereiche, die nicht in Proteine übersetzt werden. Doch diese Ansicht hat sich in den letzten Jahren grundlegend verändert. Heute ist es unter Wissenschaftlern anerkannt, dass große Teile des Erbguts in RNA übersetzt werden. Diese wiederum kann als Genregulator wirken oder als Strukturelement. Auch bei der Regulation der X-Chromosomen spielt RNA eine zentrale Rolle. Sowohl bei Frauen als auch bei Fliegenmännchen ist das X-Chromosom von einem Komplex aus RNA und Proteinen umhüllt. Bei Menschen führt das zu einer Stilllegung des Chromosoms, während es bei Fliegen zu einer verdoppelten Aktivität des Chromosoms führt.

Fehlregulationen sind dabei schnell tödlich. Obwohl die beteiligten Proteine und die RNA schon lange bekannt waren, blieb deren Wechselwirkung bislang rätselhaft.

Asifa Akhtar vom Max-Planck-Institut für Immunbiologie und Epigenetik und ihr Team entschlüsselten jetzt die Funktion der RNA und die Wechselwirkung der Proteine. Das Protein MLE, zentral in der X-Chromosom-Aktivierung, bindet an die RNA auf ganz besondere Weise. Wie ein Affe, der die Liane mit Händen und Füßen fasst, greift das Protein MLE die RNA auf zwei verschiedene Arten. Eine Seite dient als einfacher Anker (Füße), während die andere (Hände) die RNA verbiegen kann. „MLE formt die RNA. Das erlaubt dem Protein an die RNA ganz dynamisch zu binden“, sagt Laborleiterin Asifa Akhtar. Dadurch kann MLE anderen Proteinen helfen, an den RNA-Strang zu binden. So kann das gesamte X-Chromosom mit einem RNA-Protein-Komplex umgeben sein.

Erstautor Ibrahim Ilik hat sich während seiner Doktorarbeit mit der Frage beschäftigt, warum MLE am gleichen Ort wie alle anderen beteiligten Proteine zu finden ist, aber nicht direkt mit ihnen interagiert. „ Die biochemischen und biologischen Ergebnisse schienen zu Beginn in komplett unterschiedliche Richtungen zu zeigen“, sagt Ilik. „Es war ein sehr aufregender Moment, als wir erkannten, dass die Proteine hoch-spezifisch an bestimmte Bereiche der langen RNA binden.“

Die Forscher fanden zudem heraus, dass einzelne RNA-Mutationen die Verbindung mit den Proteinen kaum störte. Nur eine Vielzahl von Mutationen führte zu einer funktionslosen RNA und damit zum Tod der männlichen Fliegen. „Das System ist sehr widerstandsfähig für evolutionäre Einflüsse. Das zeigt, wie wichtig es für das Überleben der Tiere ist. Die RNA könnte dabei für die notwendige Flexibilität sorgen“, sagt Akthar. Als nächstes möchten die Wissenschaftler untersuchen, inwiefern die RNA-Protein-Verbindung im Laufe der Evolution stabil geblieben ist und wie sich sein Pendant bei Säugetieren verhält.

Ansprechpartner

Asifa Akhtar
Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg
Telefon: +49 761 5108-565
E-Mail: akhtar@­ie-freiburg.mpg.de
Johannes Faber
Max-Planck-Institut für Immunbiologie und Epigenetik, Freiburg
Telefon: +49 761 5108-368
E-Mail: presse@­ie-freiburg.mpg.de
Originalpublikation
Ibrahim Avsar Ilik, Jeffrey J. Quinn, Plamen Georgiev, Filipe Tavares- Cadete, Daniel Maticzka, Sarah Toscano, Yue Wan, Robert C. Spitale, Nicholas Luscombe, Rolf Backofen, Howard Y. Chang and Asifa Akhtar
Tandem stem-loops in roX RNAs act together to mediate X- chromosome dosage compensation in Drosophila.

Mol Cell, 51/2, July 25, 2013 (doi: http://dx.doi.org/10.1016/j.molcel.2013.07.001

Asifa Akhtar | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7474414/dosiskompensation_MLE

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Selbstfaltendes Origami
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie

Digitalanzeige mit Touchscreen WAY-AX & WAY-DX von WayCon

27.06.2017 | Energie und Elektrotechnik

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie