Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit molekularem Daumenkino Listerien auf der Spur

28.09.2009
Wissenschaftler des HZI klären die Signalwege auf, mit denen sich Listerien in unseren Darm einschleusen.

Listerien sind allgegenwärtige, meist harmlose Bakterien. Schwere Infektionen verursachen sie nur dann, wenn es ihnen gelingt, die äußeren Barrieren unseres Immunsystems zu durchbrechen: Gelegentlich gelangen sie mit verdorbenen Lebensmitteln in unseren Darm, umgehen dort unsere Sicherheitssysteme und können - einmal im Blutstrom angelangt - die Leber, das Gehirn oder bei Schwangeren den Fötus infizieren.

In der Fachzeitschrift "Molecular and Cellular Proteomics" zeigen jetzt Lothar Jänsch und sein Mitarbeiter Tobias Reinl vom Helmholtz-Zentrum für Infektionsforschung (HZI) in Braunschweig, welche Kommunikationsmechanismen Listeria monocytogenes einsetzt, um in unseren Körper einzuwandern.

Der Trick der Listerien: Sie täuschen vor, eine körpereigene Zelle oder ein Wachstumsfaktor zu sein. Dafür binden sie mit bestimmten Eiweißstoffen, den Internalinen, an die passenden Rezeptoren unserer Barrierezellen. So aktiviert, programmieren die Rezeptoren nun die Signalwege im Zellinneren um. Mit der Folge, dass unsere körpereigenen Zellen die Listeria-Bakterien in sich aufnehmen.

Eine wichtiger Substanzklasse, die Listerien nach dem Andocken im Zellinneren aktivieren, sind die Kinasen. Diese Proteine sind darauf spezialisiert, Signale innerhalb der Zelle weiter zu reichen. Dazu fügen sie mit einer einfachen chemischen Reaktion kleine strukturelle Veränderungen - so genannte Phosphorylierungen - in andere Proteine ein. Die chemische Reaktion pflanzt sich wie eine Signalkaskade innerhalb der Zelle von Protein zu Protein fort. Die Zellen verändern sich schließlich derart, dass sie ihre Barrierefunktion verlieren und die Listerien in das Körperinnere eindringen können.

"Wir möchten verstehen, wie die Signalwege in den menschlichen Barrierezellen nach dem Andocken der Listerien im Detail ablaufen", sagt Lothar Jänsch. Die HZI-Wissenschaftler haben deshalb eine neue Analysemethode entwickelt: "Wir machen Momentaufnahmen vom Infektionsprozess, sobald das Internalin der Listerien die Rezeptoren auf den Barrierezellen aktiviert hat. An ihnen können wir ablesen, welche Kinasen an der Signalweitergabe beteiligt sind."

Zu Beginn der Untersuchung aktiviert HZI-Wissenschaftler Tobias Reinl in einem Laborgefäß Barrierezellen mit Internalin - der Andocksubstanz der Listerien. Zu einem bestimmten Zeitpunkt, etwa nach vier Minuten, unterbricht er die Signalkaskade, indem er die Zellen in flüssigem Stickstoff schockfrostet. Die Momentaufnahme ist zur Untersuchung fertig. Im Anschluss analysieren Lother Jänsch und Tobias Reinl, welche der insgesamt 500 in den Zellen vorkommenden Kinasen an der Signalweitergabe beteiligt sind: Mit einer als quantitativer Massenspektroskopie bezeichneten Technik bestimmen sie deren Phosphorylierungsmuster und vergleichen es mit dem unbehandelter Zellen. So können Reinl und Jänsch genau ablesen, welche Kinasen im Augenblick der Schockfrostung gerade Signale in der Zelle weitergeben.

In Zukunft wollen die HZI-Wissenschaftler den Zustand der Kinasen zu verschiedenen Zeitpunkten untersuchen. "So bekommen wir eine Art `molekulares Daumenkino`- eine Aufnahmeserie an der wir genau ablesen können, woher ein Signal kommt und in welche Richtung es weitergegeben wird." Dadurch, dass Lother Jänsch und Tobias Reinl fast alle Kinasen, die für die Invasion eine Rolle spielen, gleichzeitig untersuchen können, können sie die Gesamtheit der Signalpfade nachvollziehen. "Und das ist letztlich die Basis, um die Kommunikation in den Barrierezellen zu blockieren und so Therapeutika gegen diese Art von Infektionen entwickeln", schließt Lothar Jänsch.

Originalartikel: Reinl T, Nimtz M, Hundertmark C, Johl T, Keri G, Wehland J, Daub H, Jänsch L.Quantitative phosphokinome analysis of the Met pathway activated by the invasin InlB from listeria monocytogenes. Mol Cell Proteomics 2009 Jul 29. [Epub ahead of print] M800521-MCP200

Hören Sie zu diesem Thema auch unseren Podcast "Mit dem Dietrich in die Zelle" auf www.helmholtz-hzi.de (Forschung zum Anhören). Tobias Reinl entführt Sie in den Keller des HZI und zeigt Ihnen wie er Signalwege in Zellen untersucht.

Dr. Bastian Dornbach | idw
Weitere Informationen:
http://www.helmholtz-hzi.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik