Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Vollbremsung der Erbsubstanz

14.05.2013
Ein Team aus Physikern der Universität Cambridge und Universität Leipzig hat in aufwändiger Forschungsarbeit neue, überraschende Erkenntnisse über die Erbsubstanz gewonnen: Ihnen ist es erstmals gelungen, das spontane Zusammenziehen einzelner aufgespannter DNS-Moleküle nach dem plötzlichen Loslassen mit hoher Zeitauflösung zu verfolgen und quantitativ zu beschreiben. Die Arbeit ist gerade in der Fachzeitschrift "Nature Communications" erschienen (doi:10.1038/ncomms2790).

Das DNS-Molekül, das allen lebenden Organismen zur Speicherung ihrer Erbinformation dient, gleicht einem unvorstellbar dünnen, aber buchstäblich ellenlangen Faden. Es ist etwa zehntausendmal dünner als ein menschliches Haar, kann aber trotzdem vergleichbar lang werden.

Unsere Erbsubstanz liegt normalerweise nicht in derart gestreckter Form vor, sondern wird von speziellen Verpackungsproteinen so kompakt wie möglich in die nur wenige tausendstel Millimeter großen Zellkerne gepresst. Doch was in der Zelle schon allein aus Platzgründen nicht möglich ist, gelingt im Laborexperiment: Einzelne DNS-Moleküle können mithilfe von Nanotechniken entwirrt und langgestreckt werden.

Die Details der komplizierten Bewegung des dünnen DNS-Fadens lassen sich dann allerdings nicht direkt mikroskopisch verfolgen, sondern müssen indirekt aus einer Kraftmessung ermittelt werden. "Dazu wird die DNS zunächst mithilfe einer Nanopore und einer optischen Pinzette in die Länge gezogen und dann an einem Ende losgelassen. Aus dem gemessenen Zeitverlauf der Zugkraft, die das andere Ende auf die optische Pinzette ausübt, lässt sich dann das 'Zurückschnurren' der DNS mit mathematischen Vorhersagen quantitativ rekonstruieren", beschreibt Prof. Dr. Klaus-Dieter Kroy vom Institut für Theoretische Physik der Universität Leipzig den komplizierten Vorgang.

Eine bemerkenswerte Eigenschaft der DNS-Bewegung, die auf diese Weise nun erstmals in den Cavendish Laboratorien in Cambridge im Detail verfolgt werden konnte, sei ihr enormer Beitrag zur Flüssigkeitsreibung des Moleküls. Das mit der Laserfalle gezogene Ende eines einen hundertstel Millimeter langen DNS-Fadens bewegte sich während des Zusammenziehens fast 20-mal langsamer als das nicht gestreckte Molekül und immerhin noch etwa dreimal langsamer als es für ein gleichlanges steifes Stäbchen der Fall wäre.

Durch den Einsatz längerer DNS-Abschnitte ließe sich diese ungewöhnliche Bremswirkung in der Zukunft sogar noch erheblich steigern. Das Zusammenziehen der DNS wird nicht durch elastische Kräfte wie etwa beim Reißen einer gespannten Gitarrensaite getrieben, sondern von den rein zufälligen Stößen mit den umgebenden Wassermolekülen. "Wie aus dem unkoordinierten Zusammenwirken thermischer Zufallsbewegungen am Ende eine reproduzierbare Bewegung des ganzen Moleküls resultieren kann, ist eine der spannenden Fragen, die sich in dem Experiment genau untersuchen lassen", erläutert Kroy, dessen Team die theoretische Arbeit übernommen und die Experimente der Physiker in Cambridge ausgewertet hat.

Nach dem Vorbild der in den vergangenen Jahren sehr erfolgreich angewandten Technik der Einzelmolekülkraftspektroskopie hofft das Forscherteam, mit seinem neuartigen zeitaufgelösten Verfahren bald noch eine Reihe weiterer interessanter Einblicke in die molekulare Dynamik der DNS und ihrer Wechselwirkungen mit Proteinen zu erzielen. Je mehr über die Dynamik der DNS und ihrer Reaktionen bekannt ist, desto besser lässt sich die Steuerung biologischer Prozesse durch die Erbsubstanz verstehen und desto gezielter lassen sich beispielsweise Medikamente entwickeln.

Weitere Informationen:

Prof. Dr. Klaus-Dieter Kroy
Institut für Theoretische Physik der Universität Leipzig
Telefon: +49 341 97-32436
E-Mail: klaus.kroy@uni-leipzig.de

Susann Huster | idw
Weitere Informationen:
http://www.uni-leipzig.de
http://www.nature.com/ncomms/journal/v4/n4/full/ncomms2790.html

Weitere Berichte zu: Cambridge DNS DNS-Fadens DNS-Molekül Dynamik Erbsubstanz Molekül Pinzette Vollbremsung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie