Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Vollbremsung der Erbsubstanz

14.05.2013
Ein Team aus Physikern der Universität Cambridge und Universität Leipzig hat in aufwändiger Forschungsarbeit neue, überraschende Erkenntnisse über die Erbsubstanz gewonnen: Ihnen ist es erstmals gelungen, das spontane Zusammenziehen einzelner aufgespannter DNS-Moleküle nach dem plötzlichen Loslassen mit hoher Zeitauflösung zu verfolgen und quantitativ zu beschreiben. Die Arbeit ist gerade in der Fachzeitschrift "Nature Communications" erschienen (doi:10.1038/ncomms2790).

Das DNS-Molekül, das allen lebenden Organismen zur Speicherung ihrer Erbinformation dient, gleicht einem unvorstellbar dünnen, aber buchstäblich ellenlangen Faden. Es ist etwa zehntausendmal dünner als ein menschliches Haar, kann aber trotzdem vergleichbar lang werden.

Unsere Erbsubstanz liegt normalerweise nicht in derart gestreckter Form vor, sondern wird von speziellen Verpackungsproteinen so kompakt wie möglich in die nur wenige tausendstel Millimeter großen Zellkerne gepresst. Doch was in der Zelle schon allein aus Platzgründen nicht möglich ist, gelingt im Laborexperiment: Einzelne DNS-Moleküle können mithilfe von Nanotechniken entwirrt und langgestreckt werden.

Die Details der komplizierten Bewegung des dünnen DNS-Fadens lassen sich dann allerdings nicht direkt mikroskopisch verfolgen, sondern müssen indirekt aus einer Kraftmessung ermittelt werden. "Dazu wird die DNS zunächst mithilfe einer Nanopore und einer optischen Pinzette in die Länge gezogen und dann an einem Ende losgelassen. Aus dem gemessenen Zeitverlauf der Zugkraft, die das andere Ende auf die optische Pinzette ausübt, lässt sich dann das 'Zurückschnurren' der DNS mit mathematischen Vorhersagen quantitativ rekonstruieren", beschreibt Prof. Dr. Klaus-Dieter Kroy vom Institut für Theoretische Physik der Universität Leipzig den komplizierten Vorgang.

Eine bemerkenswerte Eigenschaft der DNS-Bewegung, die auf diese Weise nun erstmals in den Cavendish Laboratorien in Cambridge im Detail verfolgt werden konnte, sei ihr enormer Beitrag zur Flüssigkeitsreibung des Moleküls. Das mit der Laserfalle gezogene Ende eines einen hundertstel Millimeter langen DNS-Fadens bewegte sich während des Zusammenziehens fast 20-mal langsamer als das nicht gestreckte Molekül und immerhin noch etwa dreimal langsamer als es für ein gleichlanges steifes Stäbchen der Fall wäre.

Durch den Einsatz längerer DNS-Abschnitte ließe sich diese ungewöhnliche Bremswirkung in der Zukunft sogar noch erheblich steigern. Das Zusammenziehen der DNS wird nicht durch elastische Kräfte wie etwa beim Reißen einer gespannten Gitarrensaite getrieben, sondern von den rein zufälligen Stößen mit den umgebenden Wassermolekülen. "Wie aus dem unkoordinierten Zusammenwirken thermischer Zufallsbewegungen am Ende eine reproduzierbare Bewegung des ganzen Moleküls resultieren kann, ist eine der spannenden Fragen, die sich in dem Experiment genau untersuchen lassen", erläutert Kroy, dessen Team die theoretische Arbeit übernommen und die Experimente der Physiker in Cambridge ausgewertet hat.

Nach dem Vorbild der in den vergangenen Jahren sehr erfolgreich angewandten Technik der Einzelmolekülkraftspektroskopie hofft das Forscherteam, mit seinem neuartigen zeitaufgelösten Verfahren bald noch eine Reihe weiterer interessanter Einblicke in die molekulare Dynamik der DNS und ihrer Wechselwirkungen mit Proteinen zu erzielen. Je mehr über die Dynamik der DNS und ihrer Reaktionen bekannt ist, desto besser lässt sich die Steuerung biologischer Prozesse durch die Erbsubstanz verstehen und desto gezielter lassen sich beispielsweise Medikamente entwickeln.

Weitere Informationen:

Prof. Dr. Klaus-Dieter Kroy
Institut für Theoretische Physik der Universität Leipzig
Telefon: +49 341 97-32436
E-Mail: klaus.kroy@uni-leipzig.de

Susann Huster | idw
Weitere Informationen:
http://www.uni-leipzig.de
http://www.nature.com/ncomms/journal/v4/n4/full/ncomms2790.html

Weitere Berichte zu: Cambridge DNS DNS-Fadens DNS-Molekül Dynamik Erbsubstanz Molekül Pinzette Vollbremsung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften