Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Strukturen in lebenden Zellen

15.01.2013
Konstanzer Forscher entwickeln Methode zur Strukturbestimmung von Makromolekülen mittels Abstandsmessungen innerhalb von Zellen

Ein Verbund von Chemikern, Biologen und Physikern der Universität Konstanz entwickelte eine innovative Methode, um die Strukturen von biologischen Makromolekülen wie Proteine oder DNA in Zellen zu untersuchen.

Über Abstandsinformationen im Nanometerbereich gewinnen die Forscher direkte Informationen über die dreidimensionale Struktur der Molekül-Riesen in der komplexen Umgebung innerhalb von Zellen. Die neue Methode zeichnet sich durch ihre hohe Sensitivität aus, eignet sich insbesondere für die Untersuchung der Struktur polymorpher Makromoleküle und könnte eine Rolle bei der Erforschung der Parkinsonschen Krankheit spielen. Die Methodenentwicklung fand in enger Kopplung an die Konstanzer Graduiertenschule Chemische Biologie statt, die Forschungsergebnisse wurden in der aktuellen Ausgabe des Wissenschaftsjournals „Nature Protocols“ veröffentlicht.

Hoch aufgelöste Strukturbilder von Makromolekülen, die unsere Vorstellung von der Gestalt dieser Moleküle prägen, werden durch Röntgenstrukturanalyse und Kernspinresonanz-Spektroskopie erzeugt, entweder in kristalliner Form oder hoch konzentriert im Reagenzglas. Um die Struktur der Makromoleküle unter dem Einfluss der biologisch relevanten zellulären Umgebung zu untersuchen, entwickelten die Forschergruppen von Prof. Dr. Daniel Dietrich, Prof. Dr. Jörg Hartig und Dr. Malte Drescher eine innovative Methode auf Grundlage der Elektronenspinresonanz-Spektroskopie (ESR-Spektroskopie).

Mittels ortsspezifischer Spinmarkierung werden Spin-Sonden am zu untersuchenden Makromolekül angebracht. Für die intrazelluläre ESR-Spektroskopie werden die spinmarkierten Moleküle durch eine Mikroinjektion in das Cytoplasma eingebracht. „Ideal für diesen Zweck sind Zellen des Glatten Krallenfroschs, da aufgrund ihrer Größe nur wenige Zellen für ein ESR-Experiment benötigt werden“, erläutert Daniel Dietrich. Spektroskopisch wird nun der Abstand zwischen den Spin-Sonden gemessen. „Die Grundlage der Abstandsmessungen im Nanometerbereich ist die Dipol-Dipol-Wechselwirkung zwischen den Spin-Sonden, die von ihrem Abstand abhängt. Über diese Abstandsinformation gewinnen wir eine direkte Strukturinformation“, verrät Malte Drescher das Schlüsselprinzip.

Die zwei wesentlichen Vorteile der neuen Methode sind ihre hohe Empfindlichkeit, die es erlaubt, niedrige Konzentrationen zu verwenden, sowie die Tatsache, dass allein das Signal der Spin-Sonden gemessen wird. Dadurch funktioniert die Methode selbst innerhalb von Zellen praktisch ohne Hintergrundrauschen.

Insbesondere für die Untersuchung der Struktur polymorpher Makromoleküle ist die intrazelluläre ESR-Spektroskopie von Bedeutung. Als erstes Anwendungsbeispiel wählten die Konstanzer Forscher Quadruplexe menschlicher Desoxyribonukleinsäure (DNA) – viersträngige Nukleinsäurestrukturen, die im Gegensatz zur berühmten DNA-Doppelhelix eine Vielzahl von Konformationen aufweisen. „Gleichzeitig spielt die Bildung von Quadruplexen innerhalb der Telomere am Ende des Chromosoms eine wichtige Rolle für dessen Schutz und für die Regelung des Zellzyklus“, so Jörg Hartig. Für ein intrazelluläres ESR-Experiment wurde eine menschliche Telomer-Sequenz ortsspezifisch spinmarkiert. Die ungefaltete Sequenz wurde in lebende Zellen injiziert. Nach einer Inkubationszeit von 15 Minuten konnten zwei koexistierende Konformationen nachgewiesen werden. Dies eröffnet die Möglichkeit, spezifische Molekülkomplexe zu entwickeln, die unter anderem vielversprechende Ansätze für die Krebsbekämpfung bieten.
„Diese neuartige Methode stellt ein wichtiges Bindeglied zwischen der „klassischen“ molekularen Biophysikalischen Chemie und der Systembiologie dar“, freut sich Malte Drescher, Fellow des Zukunftskollegs an der Universität Konstanz.

Die Wissenschaftler wollen ihre Methode nun in weiteren Schritten für die Erforschung von molekularen Strukturen in Zellen einsetzen: „Unsere Vorstellung ist, dass wir künftig auf Basis unserer Methode Proteine, die bei der Parkinsonschen Krankheit eine Rolle spielen, innerhalb der Zelle untersuchen wollen“, eröffnet Malte Drescher einen Ausblick auf die Fortführung der Forschungsarbeiten.
Originalveröffentlichung:
“Site-directed spin-labeling of nucleotides and the use of in-cell EPR to determine long-range distances in a biologically relevant environment”, Mykhailo Azarkh, Vijay Singh, Oliver Okle, Isabelle T Seemann, Daniel R Dietrich, Jörg S Hartig, Malte Drescher, Nature Protocols, 8, 131–147 (2013)

Hinweis an die Redaktionen:
Eine Grafik kann im Folgenden heruntergeladen werden:
http://www.pi.uni-konstanz.de/2013/005.jpg

Bildtext:
Über Abstandsinformationen im Nanometerbereich gewinnen Konstanzer Forscher direkte Informationen über die dreidimensionale Struktur von Makromolekülen innerhalb von Zellen. Zellen des Glatten Krallenfroschs boten eine ideale Grundlage für die Entwicklung der hochsensitiven Analysemethode.
Grafik: Marco Wassmer

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 / 88-3603
E-Mail: kum@uni-konstanz.de

Dr. Malte Drescher
Universität Konstanz
Physikalische und Biophysikalische Chemie
Universitätsstraße 10
78464 Konstanz
Telefon: 07531 / 88-5262
E-Mail: Malte.Drescher@uni-konstanz.de

Julia Wandt | idw
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie