Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Strukturen in lebenden Zellen

15.01.2013
Konstanzer Forscher entwickeln Methode zur Strukturbestimmung von Makromolekülen mittels Abstandsmessungen innerhalb von Zellen

Ein Verbund von Chemikern, Biologen und Physikern der Universität Konstanz entwickelte eine innovative Methode, um die Strukturen von biologischen Makromolekülen wie Proteine oder DNA in Zellen zu untersuchen.

Über Abstandsinformationen im Nanometerbereich gewinnen die Forscher direkte Informationen über die dreidimensionale Struktur der Molekül-Riesen in der komplexen Umgebung innerhalb von Zellen. Die neue Methode zeichnet sich durch ihre hohe Sensitivität aus, eignet sich insbesondere für die Untersuchung der Struktur polymorpher Makromoleküle und könnte eine Rolle bei der Erforschung der Parkinsonschen Krankheit spielen. Die Methodenentwicklung fand in enger Kopplung an die Konstanzer Graduiertenschule Chemische Biologie statt, die Forschungsergebnisse wurden in der aktuellen Ausgabe des Wissenschaftsjournals „Nature Protocols“ veröffentlicht.

Hoch aufgelöste Strukturbilder von Makromolekülen, die unsere Vorstellung von der Gestalt dieser Moleküle prägen, werden durch Röntgenstrukturanalyse und Kernspinresonanz-Spektroskopie erzeugt, entweder in kristalliner Form oder hoch konzentriert im Reagenzglas. Um die Struktur der Makromoleküle unter dem Einfluss der biologisch relevanten zellulären Umgebung zu untersuchen, entwickelten die Forschergruppen von Prof. Dr. Daniel Dietrich, Prof. Dr. Jörg Hartig und Dr. Malte Drescher eine innovative Methode auf Grundlage der Elektronenspinresonanz-Spektroskopie (ESR-Spektroskopie).

Mittels ortsspezifischer Spinmarkierung werden Spin-Sonden am zu untersuchenden Makromolekül angebracht. Für die intrazelluläre ESR-Spektroskopie werden die spinmarkierten Moleküle durch eine Mikroinjektion in das Cytoplasma eingebracht. „Ideal für diesen Zweck sind Zellen des Glatten Krallenfroschs, da aufgrund ihrer Größe nur wenige Zellen für ein ESR-Experiment benötigt werden“, erläutert Daniel Dietrich. Spektroskopisch wird nun der Abstand zwischen den Spin-Sonden gemessen. „Die Grundlage der Abstandsmessungen im Nanometerbereich ist die Dipol-Dipol-Wechselwirkung zwischen den Spin-Sonden, die von ihrem Abstand abhängt. Über diese Abstandsinformation gewinnen wir eine direkte Strukturinformation“, verrät Malte Drescher das Schlüsselprinzip.

Die zwei wesentlichen Vorteile der neuen Methode sind ihre hohe Empfindlichkeit, die es erlaubt, niedrige Konzentrationen zu verwenden, sowie die Tatsache, dass allein das Signal der Spin-Sonden gemessen wird. Dadurch funktioniert die Methode selbst innerhalb von Zellen praktisch ohne Hintergrundrauschen.

Insbesondere für die Untersuchung der Struktur polymorpher Makromoleküle ist die intrazelluläre ESR-Spektroskopie von Bedeutung. Als erstes Anwendungsbeispiel wählten die Konstanzer Forscher Quadruplexe menschlicher Desoxyribonukleinsäure (DNA) – viersträngige Nukleinsäurestrukturen, die im Gegensatz zur berühmten DNA-Doppelhelix eine Vielzahl von Konformationen aufweisen. „Gleichzeitig spielt die Bildung von Quadruplexen innerhalb der Telomere am Ende des Chromosoms eine wichtige Rolle für dessen Schutz und für die Regelung des Zellzyklus“, so Jörg Hartig. Für ein intrazelluläres ESR-Experiment wurde eine menschliche Telomer-Sequenz ortsspezifisch spinmarkiert. Die ungefaltete Sequenz wurde in lebende Zellen injiziert. Nach einer Inkubationszeit von 15 Minuten konnten zwei koexistierende Konformationen nachgewiesen werden. Dies eröffnet die Möglichkeit, spezifische Molekülkomplexe zu entwickeln, die unter anderem vielversprechende Ansätze für die Krebsbekämpfung bieten.
„Diese neuartige Methode stellt ein wichtiges Bindeglied zwischen der „klassischen“ molekularen Biophysikalischen Chemie und der Systembiologie dar“, freut sich Malte Drescher, Fellow des Zukunftskollegs an der Universität Konstanz.

Die Wissenschaftler wollen ihre Methode nun in weiteren Schritten für die Erforschung von molekularen Strukturen in Zellen einsetzen: „Unsere Vorstellung ist, dass wir künftig auf Basis unserer Methode Proteine, die bei der Parkinsonschen Krankheit eine Rolle spielen, innerhalb der Zelle untersuchen wollen“, eröffnet Malte Drescher einen Ausblick auf die Fortführung der Forschungsarbeiten.
Originalveröffentlichung:
“Site-directed spin-labeling of nucleotides and the use of in-cell EPR to determine long-range distances in a biologically relevant environment”, Mykhailo Azarkh, Vijay Singh, Oliver Okle, Isabelle T Seemann, Daniel R Dietrich, Jörg S Hartig, Malte Drescher, Nature Protocols, 8, 131–147 (2013)

Hinweis an die Redaktionen:
Eine Grafik kann im Folgenden heruntergeladen werden:
http://www.pi.uni-konstanz.de/2013/005.jpg

Bildtext:
Über Abstandsinformationen im Nanometerbereich gewinnen Konstanzer Forscher direkte Informationen über die dreidimensionale Struktur von Makromolekülen innerhalb von Zellen. Zellen des Glatten Krallenfroschs boten eine ideale Grundlage für die Entwicklung der hochsensitiven Analysemethode.
Grafik: Marco Wassmer

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 / 88-3603
E-Mail: kum@uni-konstanz.de

Dr. Malte Drescher
Universität Konstanz
Physikalische und Biophysikalische Chemie
Universitätsstraße 10
78464 Konstanz
Telefon: 07531 / 88-5262
E-Mail: Malte.Drescher@uni-konstanz.de

Julia Wandt | idw
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie