Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Lernmaschinen unter dem Mikroskop

18.08.2014

Wenn Nervenzellen miteinander kommunizieren, übernehmen Neurotransmitter eine wichtige Rolle. Die Prozesse, die dabei ablaufen, waren bisher in wichtigen Details ungeklärt. Mit einer neuen Technik haben jetzt Wissenschaftler der Universität Würzburg ein genaues Bild von ihnen gewonnen.

Alles Denken, Fühlen und Handeln des Menschen basiert auf der Tatsache, dass Nervenzellen miteinander kommunizieren. Über Synapsen leiten sie Reize weiter, verstärken diese, schwächen sie ab oder blockieren sie.


Organisation des Bruchpilot-Proteins an aktiven Zonen. Die hochauflösende dSTORM-Bildgebung (rechts) zeigt Details, die mit Lichtmikroskopie (links) nicht auflösbar sind. Skalierungsbalken 500 nm.

Foto: AG Sauer, Biozentrum, Uni Würzburg

Wie eine Fähre, die einen Fluss überquert, wandern dabei chemische Überträgerstoffe, sogenannte Neurotransmitter, von einer Seite der Synapse durch einen weniger als tausendstel Millimeter breiten Spalt und docken an speziellen Rezeptoren der Synapse der benachbarten Nervenzelle an.

Die molekulare Organisation der für diese Reizweiterleitung verantwortlichen Strukturen innerhalb der Synapse ist bislang nur unvollständig bekannt. Mithilfe eines speziellen bildgebenden Verfahrens ist es jetzt Wissenschaftlern der Universität Würzburg gelungen, Vorgänge im Nanobereich zu erfassen. In der aktuellen Ausgabe von Nature Communications stellen sie ihre Ergebnisse vor.

Molekulare Maschinen in aktiven Zonen

„Verantwortlich für den Informationstransfer an chemischen Synapsen ist die Freisetzung von Botenstoffen in der sogenannten ‚aktiven Zone’, einer hoch spezialisierten sub-zellulären Region des präsynaptischen Neurons“, erklärt Dr. Robert Kittel den Vorgang. Kittel ist Leiter einer Emmy-Noether-Gruppe am Physiologischen Institut der Universität Würzburg, in deren Mittelpunkt die molekularen Mechanismen von Synapsen stehen.

Seit 2009 erforscht er dort am Beispiel der Fruchtfliege Drosophila melanogaster Details zur Physiologie der aktiven Zone. Insbesondere interessiert er sich für die Frage, wie Veränderungen in der Struktur dieser aktiven Zonen zur synaptischen Plastizität beitragen und damit beispielsweise auch Lernen ermöglichen.

In einer aktiven Zone sind nach Kittels Worten „komplexe molekulare Maschinen“ am Werk, welche die „äußerst hohe räumliche und zeitliche Präzision synaptischer Signaltransduktion“ vermitteln. Mehrstufige Prozesse innerhalb der aktiven Zone gehen der Freigabe der Neurotransmitter voraus, in deren Verlauf die Nervenzelle die Botenstoffe in sogenannten Vesikeln bereitstellt.

Ein genaues Abbild der räumlichen Verteilung der molekularen Bestandteile der aktiven Zonen und damit Informationen über deren Organisationsprinzipien war schon lange Ziel von Kittels Forschung. Denn diese Eigenschaften sind es, die für die Funktion der aktiven Zone ausschlaggebend sind. Im Rahmen einer Kollaboration mit weiteren Würzburger Wissenschaftlern ist dieses Ziel jetzt näher gerückt.

Lichtmikroskopie mit extrem hoher Auflösung

Entscheidend war dabei die Zusammenarbeit mit Professor Markus Sauer, Inhaber des Lehrstuhls für Biotechnologie und Biophysik am Biozentrum der Universität Würzburg. Gemeinsam mit seiner Arbeitsgruppe hat Sauer eine Technik entwickelt, welche die gewünschten Bilder liefern konnte.

Ihr Name: dSTORM – direct Stochastic Optical Reconstruction Microscopy. Dabei handelt es sich um eine spezielle Form einer hochaufgelösten Fluoreszenzmikroskopie, die es möglich macht, zelluläre Strukturen und Moleküle mit zehn- bis hundertfach verbesserter Auflösung im Vergleich zur sonst üblichen Lichtmikroskopie abzubilden. Die Größenordnung der dargestellten Objekte liegt dabei im Bereich von wenigen Nanometern – also millionsten Teilen von Millimetern.

Elektrophysiologische Messungen an den Nervenzellen von Drosophila kombiniert mit den dSTORM-Bildern lieferten den Wissenschaftlern dann die gewünschten Informationen: den Zusammenhang zwischen räumlicher Anordnung spezieller Proteine im Nanomaßstab und den funktionellen Eigenschaften der aktiven Zone. Tatsächlich konnten die Forscher auf diese Weise die Kopien des sogenannten „Bruchpilot“-Proteins in den aktiven Zonen zählen und somit quantitative Struktur-Funktionsbeziehungen erarbeiten.

„Die Analyse der räumlichen Organisation von Molekülen liefert uns Informationen zu Funktionsmechanismen der aktiven Zone und hilft dabei, grundlegende Mechanismen der Hirnfunktion aufzuklären“, bewerten die Forscher das Ergebnis.

Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states. Nadine Ehmann, Sebastian van de Linde, Amit Alon, Dmitrij Ljaschenko, Xi Zhen Keung, Thorge Holm, Annika Rings, Aaron DiAntonio, Stefan Hallermann, Uri Ashery, Manfred Heckmann, Markus Sauer & Robert J. Kittel, Nature Communications. DOI: 10.1038/ncomms5650

Kontakt

Dr. Robert Kittel, T: (0931) 31-86046, robert.kittel@uni-wuerzburg.de
Prof. Dr. Markus Sauer, T: (931) 31-88687, m.sauer@uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neurobiologie - Die Chemie der Erinnerung
21.11.2017 | Ludwig-Maximilians-Universität München

nachricht Diabetes: Immunsystem kann Insulin regulieren
21.11.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Gene für das Risiko von allergischen Erkrankungen entdeckt

21.11.2017 | Studien Analysen

Wafer zu Chip: Röntgenblick für weniger Ausschuss

21.11.2017 | Informationstechnologie

Nanopartikel helfen bei Malariadiagnose – neuer Schnelltest in der Entwicklung

21.11.2017 | Biowissenschaften Chemie