Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Lernmaschinen unter dem Mikroskop

18.08.2014

Wenn Nervenzellen miteinander kommunizieren, übernehmen Neurotransmitter eine wichtige Rolle. Die Prozesse, die dabei ablaufen, waren bisher in wichtigen Details ungeklärt. Mit einer neuen Technik haben jetzt Wissenschaftler der Universität Würzburg ein genaues Bild von ihnen gewonnen.

Alles Denken, Fühlen und Handeln des Menschen basiert auf der Tatsache, dass Nervenzellen miteinander kommunizieren. Über Synapsen leiten sie Reize weiter, verstärken diese, schwächen sie ab oder blockieren sie.


Organisation des Bruchpilot-Proteins an aktiven Zonen. Die hochauflösende dSTORM-Bildgebung (rechts) zeigt Details, die mit Lichtmikroskopie (links) nicht auflösbar sind. Skalierungsbalken 500 nm.

Foto: AG Sauer, Biozentrum, Uni Würzburg

Wie eine Fähre, die einen Fluss überquert, wandern dabei chemische Überträgerstoffe, sogenannte Neurotransmitter, von einer Seite der Synapse durch einen weniger als tausendstel Millimeter breiten Spalt und docken an speziellen Rezeptoren der Synapse der benachbarten Nervenzelle an.

Die molekulare Organisation der für diese Reizweiterleitung verantwortlichen Strukturen innerhalb der Synapse ist bislang nur unvollständig bekannt. Mithilfe eines speziellen bildgebenden Verfahrens ist es jetzt Wissenschaftlern der Universität Würzburg gelungen, Vorgänge im Nanobereich zu erfassen. In der aktuellen Ausgabe von Nature Communications stellen sie ihre Ergebnisse vor.

Molekulare Maschinen in aktiven Zonen

„Verantwortlich für den Informationstransfer an chemischen Synapsen ist die Freisetzung von Botenstoffen in der sogenannten ‚aktiven Zone’, einer hoch spezialisierten sub-zellulären Region des präsynaptischen Neurons“, erklärt Dr. Robert Kittel den Vorgang. Kittel ist Leiter einer Emmy-Noether-Gruppe am Physiologischen Institut der Universität Würzburg, in deren Mittelpunkt die molekularen Mechanismen von Synapsen stehen.

Seit 2009 erforscht er dort am Beispiel der Fruchtfliege Drosophila melanogaster Details zur Physiologie der aktiven Zone. Insbesondere interessiert er sich für die Frage, wie Veränderungen in der Struktur dieser aktiven Zonen zur synaptischen Plastizität beitragen und damit beispielsweise auch Lernen ermöglichen.

In einer aktiven Zone sind nach Kittels Worten „komplexe molekulare Maschinen“ am Werk, welche die „äußerst hohe räumliche und zeitliche Präzision synaptischer Signaltransduktion“ vermitteln. Mehrstufige Prozesse innerhalb der aktiven Zone gehen der Freigabe der Neurotransmitter voraus, in deren Verlauf die Nervenzelle die Botenstoffe in sogenannten Vesikeln bereitstellt.

Ein genaues Abbild der räumlichen Verteilung der molekularen Bestandteile der aktiven Zonen und damit Informationen über deren Organisationsprinzipien war schon lange Ziel von Kittels Forschung. Denn diese Eigenschaften sind es, die für die Funktion der aktiven Zone ausschlaggebend sind. Im Rahmen einer Kollaboration mit weiteren Würzburger Wissenschaftlern ist dieses Ziel jetzt näher gerückt.

Lichtmikroskopie mit extrem hoher Auflösung

Entscheidend war dabei die Zusammenarbeit mit Professor Markus Sauer, Inhaber des Lehrstuhls für Biotechnologie und Biophysik am Biozentrum der Universität Würzburg. Gemeinsam mit seiner Arbeitsgruppe hat Sauer eine Technik entwickelt, welche die gewünschten Bilder liefern konnte.

Ihr Name: dSTORM – direct Stochastic Optical Reconstruction Microscopy. Dabei handelt es sich um eine spezielle Form einer hochaufgelösten Fluoreszenzmikroskopie, die es möglich macht, zelluläre Strukturen und Moleküle mit zehn- bis hundertfach verbesserter Auflösung im Vergleich zur sonst üblichen Lichtmikroskopie abzubilden. Die Größenordnung der dargestellten Objekte liegt dabei im Bereich von wenigen Nanometern – also millionsten Teilen von Millimetern.

Elektrophysiologische Messungen an den Nervenzellen von Drosophila kombiniert mit den dSTORM-Bildern lieferten den Wissenschaftlern dann die gewünschten Informationen: den Zusammenhang zwischen räumlicher Anordnung spezieller Proteine im Nanomaßstab und den funktionellen Eigenschaften der aktiven Zone. Tatsächlich konnten die Forscher auf diese Weise die Kopien des sogenannten „Bruchpilot“-Proteins in den aktiven Zonen zählen und somit quantitative Struktur-Funktionsbeziehungen erarbeiten.

„Die Analyse der räumlichen Organisation von Molekülen liefert uns Informationen zu Funktionsmechanismen der aktiven Zone und hilft dabei, grundlegende Mechanismen der Hirnfunktion aufzuklären“, bewerten die Forscher das Ergebnis.

Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states. Nadine Ehmann, Sebastian van de Linde, Amit Alon, Dmitrij Ljaschenko, Xi Zhen Keung, Thorge Holm, Annika Rings, Aaron DiAntonio, Stefan Hallermann, Uri Ashery, Manfred Heckmann, Markus Sauer & Robert J. Kittel, Nature Communications. DOI: 10.1038/ncomms5650

Kontakt

Dr. Robert Kittel, T: (0931) 31-86046, robert.kittel@uni-wuerzburg.de
Prof. Dr. Markus Sauer, T: (931) 31-88687, m.sauer@uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Geheimnis der Sojabohne: Mainzer Forscher untersuchen Ölkörperchen in Sojabohnen
20.06.2018 | Max-Planck-Institut für Polymerforschung

nachricht Schlüsselmolekül des Alterns entdeckt
20.06.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics