Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine molekulare Bremse für den kleinsten Motor der Welt

19.03.2010
Bakterien können trotz ihrer geringen Grösse mithilfe eines winzigen rotierenden Nanomotors unglaubliche Schwimmleistungen vollbringen. Dabei steuert eine molekulare Motorbremse die Geschwindigkeit.

Diese neuen Erkenntnisse aus der Grundlagenforschung sind für die Nanotechnologie von Bedeutung. Die Resultate des internationalen Forscherteams unter Leitung des Biozentrums der Universität Basel erschienen in der Online-Ausgabe der Fachzeitschrift "Cell".

Bakterien der Spezies Escherichia coli können, wie viele andere Keime auch, Nahrungsgradienten wahrnehmen und mit Hilfe rotierender Flagellen zu Orten höherer Nährstoffkonzentration schwimmen. Geht die Nahrung jedoch definitiv zur Neige, schwimmen die Keime immer langsamer. Bei diesem Phänomen spielen ein intrazellulärer Botenstoff namens cyclic-dimeric-GMP und ein Protein namens YcgR eine Rolle; es blieb jedoch unklar, ob diese das Schwimmtempo direkt beeinflussen oder beispielsweise den Reibungswiderstand der Zelloberfläche erhöhen.

Einem Forscherteam aus Basel, Zürich, Heidelberg und Hannover unter der Leitung von Dr. Alex Böhm und Prof. Urs Jenal vom Biozentrum der Universität Basel konnte nun zeigen, dass die beiden Moleküle Teil einer ausgeklügelten Maschinerie sind, mit deren Hilfe E. coli seinen Flagellenmotor ganz gezielt drosseln kann.

Bindet nämlich der Botenstoff an das YcgR-Protein, wird dieses zu einer Art molekularen Bremse: Es interagiert mit jenen Teilen des Motors, die den Rotor antreiben, und verlangsamt dadurch die Drehbewegung der Flagellen. Und da jeder Motor über eine Reihe solcher Antriebsproteine verfügt, kann das Schwimmtempo schrittweise gedrosselt werden, und zwar umso stärker, je mehr Antriebsproteine durch die molekulare Bremse blockiert werden.

Wie viele das sind, hängt von der Konzentration des Botenstoffs in der Zelle ab, und die wiederum korreliert mit der Nährstoffversorgung der Bakterien. Denn von den fünf Enzymen, die den Botenstoff produzieren beziehungsweise abbauen, werden immerhin drei gegen Ende der Wachstumsphase - wenn die Nährstoffe zur Neige gehen - an- respektive abgeschaltet. Die Forscher vermuten deshalb, dass dieser Mechanismus es den Bakterien erlaubt, ökonomischer mit den schwindenden Ressourcen umzugehen.

Die neue Arbeit zeigt aber nicht nur einmal mehr, zu welchen faszinierenden Leistungen Mikroorganismen in der Lage sind, sondern ist darüber hinaus auch etwa für die Nanotechnologie von Interesse. Die hat den bakteriellen Flagellenmotor bereits vor geraumer Zeit für sich entdeckt, schliesslich ist dieser mit einem Durchmesser von etwa 45 Nanometern um mehrere Grössenordnungen kleiner als die - im Hinblick auf Beweglichkeit, Leistung und Wirkungsgrad - deutlich schlechteren sogenannten Nanomotoren, die von Wissenschaftlern bislang gebaut wurden. Dass das Vorbild aus der Biologie nun auch noch fein reguliert werden kann, legt die Messlatte noch höher.

Originalbeitrag
Böhm et al.,
Second Messenger-Mediated Adjustment of Bacterial Swimming Velocity
Cell (2010) | doi: 10.1016/j.cell.2010.01.018
Weitere Auskünfte
Dr. Alex Böhm, Tel. +41 61 267 20 91, E-Mail: alexander.boehm@unibas.ch

Reto Caluori | idw
Weitere Informationen:
http://www.cell.com/abstract/S0092-8674%2810%2900019-X

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie