Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die molekulare Basis des Lernens

03.05.2013
Bei Lernprozessen bilden Nervenzellen im Gehirn neue Verknüpfungen und stärken oder schwächen bereits bestehende Verbindungen. Was dabei auf molekularer Ebene geschieht, ist noch weitgehend unklar. Jetzt haben Würzburger Forscher grundlegende Details aufgeklärt.
Irgendetwas zwischen 100 und 1000 Milliarden Nervenzellen besitzt das menschliche Gehirn. Jede einzelne von ihnen steht mit durchschnittlich 1000 anderen Zellen in Kontakt. Über synaptische Verbindungen hinweg tauschen sich die Zellen untereinander aus und steuern so unser Denken, Handeln und Empfinden.

Gleichzeitig schafft es dieses hoch komplexe Netzwerk, sich in einem ständigen Prozess der Selbstorganisation an veränderte Bedingungen anzupassen. Es versetzt seinen Träger so in die Lage, mit völlig neuen und unerwarteten Situationen fertig zu werden und kann selbst dann noch leistungsfähig arbeiten, wenn es Schaden genommen hat.

Synaptische Plastizität

Plastizität lautet der Fachausdruck für diese Wandlungsfähigkeit; synaptische Plastizität ist eine ihrer Unterformen. Lernen basiert auf dieser Fähigkeit des Gehirns, neue Verknüpfungen zu bilden, bestehende zu verstärken und ungenutzte wieder abzubauen. Wissenschaftler vom Physiologischen Institut der Universität Würzburg haben untersucht, welche molekularen Veränderungen dabei an den Synapsen ablaufen. Die Fachzeitschrift Cell Reports berichtet darüber in ihrer neuesten Ausgabe.
„Die synaptische Plastizität ist schon lange bekannt. Eine besonders einflussreiche Hypothese hat der kanadische Psychologe Donald O. Hebb bereits 1949 in seiner berühmten Lernregel formuliert“, sagt Dr. Robert Kittel. Kittel ist Leiter einer Emmy-Noether-Gruppe am Physiologischen Institut; gemeinsam mit seinen Mitarbeitern Dmitrij Ljaschenko und Nadine Ehmann hat er den Cell Press-Artikel verfasst.

Verkürzt formuliert, sagt Hebb: Je häufiger ein bestimmtes Neuron gleichzeitig mit einem anderen Neuron aktiv ist, umso bevorzugter werden die beiden Neuronen aufeinander reagieren – ganz nach dem Motto: what fires together, wires together – was zusammen feuert, verbindet sich.

Motoneurone im Visier

„Obwohl man heute weiß, dass synaptische Aktivität und die Entwicklung der Synapsen aufs Engste miteinander verbunden sind, ist unser Wissen über den molekularen Mechanismus dieses Zusammenhangs längst nicht vollständig“, sagt Robert Kittel. Allerdings ist es ihm und seinem Team jetzt gelungen, neue Details aufzuklären – mit Fliegenlarven, blauem Licht und einem genauen Blick auf die molekularen Details.

In ihren Experimenten haben sich die Wissenschaftler auf die sogenannten „Motoneurone“ der Fliegenlarven konzentriert. Dabei handelt es sich um Nervenzellen, die Muskeln kontaktieren und ihnen über ihre Synapsen beispielsweise den Befehl erteilen, sich zu verkürzen. Die Dynamik an diesen Stellen ist groß: „Der Muskel der Fliegenlarve wächst binnen weniger Tage um das Hundertfache. Dementsprechend müssen auch die Synapsen nachwachsen“, sagt Kittel.

Noch aus einem anderen Grund sind Fliegen-Motoneurone für die Forschung interessant: Als Botenstoff überträgt bei ihnen Glutamat die Information von der Prä- zur Postsynapse – sprich: von der Nervenzelle auf den Muskel. Beim Menschen ist Glutamat der Hauptbotenstoff im Gehirn. Dementsprechend hat sich bewährt, dass Erkenntnisse über die Vorgänge am Larven-Motoneuron auf den Menschen – und andere Säugetiere – gut übertragbar sind.

Lichtblitze an Fliegenlarven

Mit einer trickreichen Technik, die unter dem Stichwort „Optogenetik“ bekannt wurde, konnten die Wissenschaftler die Aktivität der Motoneurone steuern. Dazu haben sie sogenannte Kanalrhodopsine in die Zellwände eingebaut. Kanalrhodopsine sind Ionenkänale, die durch Licht gesteuert werden. Durch Ionenkanäle leiten Zellen elektrische geladene Teilchen durch ihre Zellmembran ins Zellinnere hinein oder in den extrazellulären Raum hinaus. Nervenzellen nutzen diesen Mechanismus beispielsweise für die Signalweiterleitung von Sinnesempfindungen ans Gehirn und zur Steuerung der Muskeln. Einer der Entdecker dieser Technik, Professor Georg Nagel, ist Professor am Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik der Universität Würzburg. Mit Kittels Gruppe arbeitet er in einigen Projekten zusammen.

„Da Fliegenlarven praktischerweise durchsichtig sind, mussten wir sie nur noch blauen Lichtpulsen aussetzen, um so eine Aktivität in den Neuronen zu erzeugen“, erklärt Kittel. Über 100 Minuten hinweg brachten die Wissenschaftler die Nervenzellen auf diese Weise dazu, Signale an die Muskeln zu senden. Im Anschluss daran untersuchten sie, welche funktionellen und molekularen Veränderungen in den Synapsen stattgefunden hatten.

Die wichtigsten Ergebnisse
Nach der intensiven Aktivität der Motoneurone war die postsynaptische Empfindlichkeit – also die Empfindlichkeit auf Seiten der Muskeln deutlich erhöht. Dort hatte die Zelle vermehrt Glutamat-Rezeptoren einer speziellen Untereinheit – sogenannte Typ-2A-Rezeptoren – eingebaut. „Allerdings trat dieser Effekt nur dann auf, wenn Nerv und Muskel gleichzeitig stimuliert worden waren“, sagt Kittel. Ein Befund, der das Team hellhörig machte – entspricht er doch genau der Hebb’schen Regel, nach der Verbindungen dann gestärkt werden, wenn die Beteiligten gleichzeitig aktiv sind.

Umgekehrt wurden diese 2A-Untereinheiten wieder sehr schnell von solchen Synapsen entfernt, deren Aktivität nicht dazu in der Lage war, auf Seiten des Muskels eine substanzielle Aktivität zu erzeugen. Auch das ist ein sinnvoller Prozess: „Wenn die Menge der Rezeptoren immer nur zunehmen könnte, würde das System bald kollabieren“, sagt Kittel. Deshalb müsse es zwingend auch eine Möglichkeit geben, „das System zu bremsen“. Schickt also eine Synapse als einzige dem Muskel den Befehl zum Kontrahieren, reicht das in der Regel nicht dafür aus, eine Reaktion hervorzurufen. In der Folge wird sie für ihren Alleingang durch den Entzug von Rezeptoren „bestraft“.

Ein „vielversprechendes physiologisches Konzept“ seien diese Erkenntnisse, sagt Kittel. Sie lieferten ein Bild von den molekularen Vorgängen der synaptischen Plastizität und zeigen, wie beim Hebb’schen Lernen Synapsen reifen und eine spärliche Transmitterfreigabe die Stabilisierung der molekularen Zusammensetzung individueller Synapsen kontrolliert. Mit diesem Wissen über die grundlegenden Mechanismen sei es nun möglich, auch an anderen Stellen zu überprüfen, ob sie dort gleichermaßen gelten.

Hebbian Plasticity Guides Maturation of Glutamate Receptor Fields In Vivo. Dmitrij Ljaschenko, Nadine Ehmann and Robert J. Kittel. Cell Reports, online published May 2. http://dx.doi.org/10.1016/j.celrep.2013.04.003

Kontakt
Dr. Robert Kittel, T: (0931) 31-86046, robert.kittel@uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte