Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die molekulare Basis des Lernens

03.05.2013
Bei Lernprozessen bilden Nervenzellen im Gehirn neue Verknüpfungen und stärken oder schwächen bereits bestehende Verbindungen. Was dabei auf molekularer Ebene geschieht, ist noch weitgehend unklar. Jetzt haben Würzburger Forscher grundlegende Details aufgeklärt.
Irgendetwas zwischen 100 und 1000 Milliarden Nervenzellen besitzt das menschliche Gehirn. Jede einzelne von ihnen steht mit durchschnittlich 1000 anderen Zellen in Kontakt. Über synaptische Verbindungen hinweg tauschen sich die Zellen untereinander aus und steuern so unser Denken, Handeln und Empfinden.

Gleichzeitig schafft es dieses hoch komplexe Netzwerk, sich in einem ständigen Prozess der Selbstorganisation an veränderte Bedingungen anzupassen. Es versetzt seinen Träger so in die Lage, mit völlig neuen und unerwarteten Situationen fertig zu werden und kann selbst dann noch leistungsfähig arbeiten, wenn es Schaden genommen hat.

Synaptische Plastizität

Plastizität lautet der Fachausdruck für diese Wandlungsfähigkeit; synaptische Plastizität ist eine ihrer Unterformen. Lernen basiert auf dieser Fähigkeit des Gehirns, neue Verknüpfungen zu bilden, bestehende zu verstärken und ungenutzte wieder abzubauen. Wissenschaftler vom Physiologischen Institut der Universität Würzburg haben untersucht, welche molekularen Veränderungen dabei an den Synapsen ablaufen. Die Fachzeitschrift Cell Reports berichtet darüber in ihrer neuesten Ausgabe.
„Die synaptische Plastizität ist schon lange bekannt. Eine besonders einflussreiche Hypothese hat der kanadische Psychologe Donald O. Hebb bereits 1949 in seiner berühmten Lernregel formuliert“, sagt Dr. Robert Kittel. Kittel ist Leiter einer Emmy-Noether-Gruppe am Physiologischen Institut; gemeinsam mit seinen Mitarbeitern Dmitrij Ljaschenko und Nadine Ehmann hat er den Cell Press-Artikel verfasst.

Verkürzt formuliert, sagt Hebb: Je häufiger ein bestimmtes Neuron gleichzeitig mit einem anderen Neuron aktiv ist, umso bevorzugter werden die beiden Neuronen aufeinander reagieren – ganz nach dem Motto: what fires together, wires together – was zusammen feuert, verbindet sich.

Motoneurone im Visier

„Obwohl man heute weiß, dass synaptische Aktivität und die Entwicklung der Synapsen aufs Engste miteinander verbunden sind, ist unser Wissen über den molekularen Mechanismus dieses Zusammenhangs längst nicht vollständig“, sagt Robert Kittel. Allerdings ist es ihm und seinem Team jetzt gelungen, neue Details aufzuklären – mit Fliegenlarven, blauem Licht und einem genauen Blick auf die molekularen Details.

In ihren Experimenten haben sich die Wissenschaftler auf die sogenannten „Motoneurone“ der Fliegenlarven konzentriert. Dabei handelt es sich um Nervenzellen, die Muskeln kontaktieren und ihnen über ihre Synapsen beispielsweise den Befehl erteilen, sich zu verkürzen. Die Dynamik an diesen Stellen ist groß: „Der Muskel der Fliegenlarve wächst binnen weniger Tage um das Hundertfache. Dementsprechend müssen auch die Synapsen nachwachsen“, sagt Kittel.

Noch aus einem anderen Grund sind Fliegen-Motoneurone für die Forschung interessant: Als Botenstoff überträgt bei ihnen Glutamat die Information von der Prä- zur Postsynapse – sprich: von der Nervenzelle auf den Muskel. Beim Menschen ist Glutamat der Hauptbotenstoff im Gehirn. Dementsprechend hat sich bewährt, dass Erkenntnisse über die Vorgänge am Larven-Motoneuron auf den Menschen – und andere Säugetiere – gut übertragbar sind.

Lichtblitze an Fliegenlarven

Mit einer trickreichen Technik, die unter dem Stichwort „Optogenetik“ bekannt wurde, konnten die Wissenschaftler die Aktivität der Motoneurone steuern. Dazu haben sie sogenannte Kanalrhodopsine in die Zellwände eingebaut. Kanalrhodopsine sind Ionenkänale, die durch Licht gesteuert werden. Durch Ionenkanäle leiten Zellen elektrische geladene Teilchen durch ihre Zellmembran ins Zellinnere hinein oder in den extrazellulären Raum hinaus. Nervenzellen nutzen diesen Mechanismus beispielsweise für die Signalweiterleitung von Sinnesempfindungen ans Gehirn und zur Steuerung der Muskeln. Einer der Entdecker dieser Technik, Professor Georg Nagel, ist Professor am Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik der Universität Würzburg. Mit Kittels Gruppe arbeitet er in einigen Projekten zusammen.

„Da Fliegenlarven praktischerweise durchsichtig sind, mussten wir sie nur noch blauen Lichtpulsen aussetzen, um so eine Aktivität in den Neuronen zu erzeugen“, erklärt Kittel. Über 100 Minuten hinweg brachten die Wissenschaftler die Nervenzellen auf diese Weise dazu, Signale an die Muskeln zu senden. Im Anschluss daran untersuchten sie, welche funktionellen und molekularen Veränderungen in den Synapsen stattgefunden hatten.

Die wichtigsten Ergebnisse
Nach der intensiven Aktivität der Motoneurone war die postsynaptische Empfindlichkeit – also die Empfindlichkeit auf Seiten der Muskeln deutlich erhöht. Dort hatte die Zelle vermehrt Glutamat-Rezeptoren einer speziellen Untereinheit – sogenannte Typ-2A-Rezeptoren – eingebaut. „Allerdings trat dieser Effekt nur dann auf, wenn Nerv und Muskel gleichzeitig stimuliert worden waren“, sagt Kittel. Ein Befund, der das Team hellhörig machte – entspricht er doch genau der Hebb’schen Regel, nach der Verbindungen dann gestärkt werden, wenn die Beteiligten gleichzeitig aktiv sind.

Umgekehrt wurden diese 2A-Untereinheiten wieder sehr schnell von solchen Synapsen entfernt, deren Aktivität nicht dazu in der Lage war, auf Seiten des Muskels eine substanzielle Aktivität zu erzeugen. Auch das ist ein sinnvoller Prozess: „Wenn die Menge der Rezeptoren immer nur zunehmen könnte, würde das System bald kollabieren“, sagt Kittel. Deshalb müsse es zwingend auch eine Möglichkeit geben, „das System zu bremsen“. Schickt also eine Synapse als einzige dem Muskel den Befehl zum Kontrahieren, reicht das in der Regel nicht dafür aus, eine Reaktion hervorzurufen. In der Folge wird sie für ihren Alleingang durch den Entzug von Rezeptoren „bestraft“.

Ein „vielversprechendes physiologisches Konzept“ seien diese Erkenntnisse, sagt Kittel. Sie lieferten ein Bild von den molekularen Vorgängen der synaptischen Plastizität und zeigen, wie beim Hebb’schen Lernen Synapsen reifen und eine spärliche Transmitterfreigabe die Stabilisierung der molekularen Zusammensetzung individueller Synapsen kontrolliert. Mit diesem Wissen über die grundlegenden Mechanismen sei es nun möglich, auch an anderen Stellen zu überprüfen, ob sie dort gleichermaßen gelten.

Hebbian Plasticity Guides Maturation of Glutamate Receptor Fields In Vivo. Dmitrij Ljaschenko, Nadine Ehmann and Robert J. Kittel. Cell Reports, online published May 2. http://dx.doi.org/10.1016/j.celrep.2013.04.003

Kontakt
Dr. Robert Kittel, T: (0931) 31-86046, robert.kittel@uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten