Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich molekulare Anstandsdamen verhalten – Strukturänderungen des Chaperons BiP entschlüsselt

13.01.2011
Proteine sind die „Arbeitspferde“ der Zelle. Ihre vielfältigen Funktionen können sie aber nur erfüllen, wenn sie in eine jeweils spezifische dreidimensionale Form gefaltet sind. Fehlgefaltete Proteine lagern sich oft ab und führen dann zu schweren Leiden, darunter Alzheimer, Parkinson und Chorea Huntington. Sogenannte Chaperone – eine Art molekularer „Anstandsdamen“ – helfen bereits bei der Proteinsynthese, derartige Defekte zu verhindern.

Ein Forscherteam um Professor Don C. Lamb vom Department für Chemie der Ludwig-Maximilians-Universität (LMU) München und Professor Johannes Buchner von der Technischen Universität München (TUM) ist nun der Frage nachgegangen, welche strukturellen Änderungen das wichtige Chaperon BiP im Detail durchläuft und wie es vom Co-Chaperon ERdJ3 beeinflusst wird, von der Bindung unterschiedlicher Substrate bis zu deren Ablösung. Dabei zeigte sich unter anderem, dass das Molekül aus zwei größeren Domänen besteht, die sich gegenseitig in ihrer Struktur und damit ihrer Funktion beeinflussen. Die Ergebnisse beruhen unter anderem auf hochkomplexen Untersuchungen mit FRET, einer Methode zur Messung von Nanoabständen in und zwischen Molekülen. (Nature Structural & Molecular Biologyonline, 9. Januar 2011)

Die Faltung, der Zusammenbau und die Qualitätskontrolle etwa eines Drittels aller zellulären Proteine finden im sogenannten Endoplasmatischen Retikulum statt. Das Protein BiP, eines der wichtigsten Chaperone in höheren Organismen, spielt bei all diesen Prozessen eine entscheidende Rolle – vermutlich auch beim Abbau von Proteinen. Messungen mit Fluoreszenz-Resonanz-Energie-Transfer (FRET) zeigten in der vorliegenden Studie unter anderem, dass BiP aus zwei größeren Domänen besteht, die sich gegenseitig in ihrer Struktur und damit in ihrer Funktion stark beeinflussen.

Eine dieser Domänen hat eine Art molekularen Deckel. Die Forscher konnten zeigen, dass das Chaperon einen offenen Deckel hatte, wenn es an andere Proteine gebunden war. Ist hingegen nur eine kurze Aminosäurekette an BiP gebunden, ist der Deckel geschlossen. In der Studie handelte es sich dabei um ein kurzes Peptid aus nur sieben Bausteinen. „Das ist so interessant, weil Pharmaunternehmen häufig nur kurze Peptidketten anstatt großer Proteine testen, was die Arbeit erheblich vereinfacht“, sagt Professor Don C. Lamb. „Wir konnten eindeutig nachweisen, dass BiP den Unterschied zwischen einem kurzen Peptid und einem langen ungefalteten Protein unterscheiden kann, obwohl die Interaktion auf derselben Sequenz beruht.“

Wie sich der molekulare Deckel verhält, hängt wiederum stark von einem BiP-Bindungspartner ab, dem Molekül ERdJ3. Dieses Co-Chaperon bindet selbst an BiP und hilft unter anderem bei dessen Interaktion mit Substraten. „Unsere Ergebnisse zeigen, dass ERdJ3 das Chaperon gewissermaßen vorbereitet für die Bindung an das Substrat, sagt Professor Johannes Buchner vom Department für Chemie der TU München. „Tatsächlich interagiert das Co-Chaperon sogar über mehrere Binderegionen direkt mit BiP. Insgesamt deuten unsere Ergebnisse darauf hin, dass eine komplexe, miteinander verzahnte Wechselwirkung zwischen Chaperon, Co-Chaperon und Substrat stattfindet.“ (suwe)

Die Studie wurde unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft (Exzellenzcluster „Nanosystems Initiative Munich“ (NIM) und Center for Integrated Protein Science Munich (CiPSM), International Doctorate Program NanoBioTechnology der LMU, International Graduate School of Science and Engineering (IGSSE) der TUM, SFB 749), dem Fonds der chemischen Industrie und dem LMUInnovativ BioImaging Network.

Publikation:
„Substrate discrimination of the chaperone BiP by autonomous and cochaperone-regulated conformational transitions”,
Moritz Marcinowski, Matthias Höller, Matthias J. Feige, Danae Baerend, Don C. Lamb, Johannes Buchner
Nature Structural & Molecular Biology online, 9. Januar 2011
Doi: 10.1038/nsmb.1970
Ansprechpartner:
Professor Don C. Lamb
Department für Chemie der LMU
Tel.: 089 / 2180 – 77564
E-Mail: d.lamb@lmu.de
Web: www.cup.uni-muenchen.de/pc/lamb/index.html
Professor Johannes Buchner
Department Chemie, Technische Universitat München
Tel: 089 / 2190 13340
E-Mail: Johannes.Buchner@ch.tum.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.tum.de
http://www.cup.uni-muenchen.de/pc/lamb/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise