Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Andockstelle eines Bakteriengifts identifiziert

09.06.2015

Freiburger Forscher haben aufgeklärt, wie ein von Darmerregern hergestelltes Toxin ins Innere von Zellen gelangt

Das Darmbakterium Clostridium difficile kann mithilfe seiner Giftstoffe schwere Durchfälle und lebensbedrohliche Darmentzündungen hervorrufen. Die Freiburger Pharmakologen und Toxikologen Prof. Dr. Dr. Klaus Aktories und Privatdozent Dr. Panagiotis Papatheodorou haben die molekulare Andockstelle identifiziert, die dafür verantwortlich ist, dass ein bestimmtes C. difficile-Toxin an seinen Rezeptor auf der Membran von Zellen der Darmschleimhaut bindet.


© Panagiotis Papatheodorou

Der Rezeptor befördert den Giftstoff wie ein Fahrstuhl ins Zellinnere, wo das Toxin seine tödliche Wirkung entfaltet. „Bakterien werden zunehmend resistent gegenüber Antibiotika. Neue Therapiekonzepte sind daher erforderlich, die nicht mehr primär auf die Bakterien ausgerichtet sind“, sagt Aktories.

„Das Ziel sollte zukünftig sein, zusätzlich das toxische Potenzial ihrer Giftstoffe zu reduzieren.“ Die Forschungsergebnisse haben die Wissenschaftlerinnen und Wissenschaftler in der Fachzeitschrift „Journal of Biological Chemistry“ veröffentlicht.

Der Darmerreger C. difficile tritt vor allem in Krankenhäusern und häufig bei älteren oder immungeschwächten Personen in Erscheinung. In den westlichen Ländern nehmen Infektionen mit so genannten hypervirulenten C. difficile-Stämmen, die gefährlicher und schwieriger zu behandeln sind, rasant zu. Das Krankheitsbild der C. difficile-Infektion wird maßgeblich durch zwei Toxine ausgelöst, die vom Erreger abgegeben werden und dann die Darmschleimhaut schädigen.

Besonders gefährliche hypervirulente Stämme produzieren ein drittes Toxin, die C. difficile-Transferase (CDT). Das CDT-Toxin verändert das Zellskelett, sodass die Wirtszellen zusammenbrechen und schließlich absterben. Aktories und Papatheodorou identifizierten 2011 das Oberflächenprotein LSR (lipolysis-stimulated lipoprotein receptor) als Rezeptor für den Giftstoff CDT. CDT verwendet LSR, um in Wirtszellen einzudringen.

Die Arbeitsgruppe um Papatheodorou und Aktories hat nun diejenigen Bereiche innerhalb des CDT-Toxins und des LSR-Rezeptors eingegrenzt, die miteinander wechselwirken. Zu diesem Zweck stellten die Forscherinnen und Forscher Zellen, denen der LSR-Rezeptor fehlt, sowie Verkürzungen des Toxins und des Rezeptors gentechnisch her.

Anschließend prüften sie, ob das CDT-Toxin an seinen Rezeptor binden und in die Zelle aufgenommen werden kann. Es stellte sich heraus, dass der Teil des Toxins, der mit dem Rezeptor interagiert, deutlich kleiner ist als bislang angenommen: Allein der Teil des Rezeptors, der sich außerhalb der Zelle befindet, reicht für die Aufnahme des Toxins aus. „Zukünftig sollte es dank dieses Wissens möglich sein, die entsprechenden Bereiche des Giftstoffes und des Rezeptors zu blockieren und damit den Eintritt des Toxins in die Wirtszellen zu verhindern“, erklärt Papatheodorou.

Papatheodorou und Aktories forschen am Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Universität Freiburg. Aktories ist zudem Mitglied des Freiburger Exzellenzclusters BIOSS Centre for Biological Signalling Studies.

Originalpublikation:
Hemmasi S*, Czulkies BA*, Schorch B, Veit A, Aktories K, Papatheodorou P (2015). Interaction of the Clostridium difficile Binary Toxin CDT and Its Host Cell Receptor, Lipolysis-stimulated Lipoprotein Receptor (LSR). In: Journal of Biological Chemistry 290(22):14031-44. DOI: 10.1074/jbc.M115.650523
*geteilte Erstautorenschaft

Artikel im Forschungsmagazin uni’wissen (2013):
www.pr2.uni-freiburg.de/publikationen/uniwissen/uniwissen-2013-1/#/36

Kontakt:
Prof. Dr. Dr. Klaus Aktories
Institut für Experimentelle und Klinische Pharmakologie und Toxikologie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-5301
E-Mail: klaus.aktories@pharmakol.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2015/pm.2015-06-09.82

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik