Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekularbiologie - Architekten des Lebens in 3D

24.10.2013
Zehn Jahre arbeiteten LMU-Wissenschaftler um Patrick Cramer daran, die Struktur eines zentralen Schalters für das Zellwachstum aufzuklären. Nun ist ihnen der Durchbruch gelungen – und zwar bei einer Auflösung, die die Lage einzelner Atome preisgibt.

Zellwachstum erfordert die Synthese großer Proteinmengen in den zellulären Proteinfabriken, den Ribosomen. Dazu müssen auch die Ribosomen selbst in großer Zahl von der Zelle produziert werden.

Zu zwei Dritteln bestehen Ribosomen aus ribosomaler RNA, die bis zu 60 Prozent aller RNA in der Zelle ausmacht und durch das Enzym RNA-Polymerase I (Pol I) synthetisiert wird. Ohne Pol I kann keine Proteinproduktion erfolgen, das Enzym ist daher ein zentraler Regulator des Zellwachstums. Geraten Pol I und somit das Zellwachstum außer Kontrolle, entsteht Krebs.

Trotz der großen Bedeutung von Pol I war die Struktur des Enzyms ein ungelöstes Rätsel, weil Pol I eines der größten und komplexesten Proteine darstellt und daher für hoch aufgelöste Strukturanalysen schlecht zugänglich ist. Professor Patrick Cramer, Leiter des Genzentrums der LMU, hat mit seinem Team diesen Meilenstein der Molekularbiologie nun erreicht:

Die Wissenschaftler stellen in der aktuellen Ausgabe des Magazins „Nature“ die dreidimensionale Struktur von Pol I vor – und zwar in einer Auflösung, die alle 14 Untereinheiten des Enzyms lokalisiert und die Lage von knapp 35.000 Atomen (Wasserstoffatome nicht mitgezählt) preisgibt. Damit erhalten die Wissenschaftler einen detaillierten Einblick in die Funktionsweise des Enzyms.

Kristalle im Röntgenlicht

„Entscheidend für den Erfolg war, dass es uns nach zehn Jahren harter Laborarbeit gelungen ist, Kristalle des Enzyms zu züchten, die für eine Röntgenstrukturanalyse des gesamten Komplexes bei hoher Auflösung geeignet sind. Dies war aufgrund der Größe und Komplexität von Pol I sehr schwierig“, berichtet Cramer. Die Kristalle bestehen aus vielen identischen Pol I Molekülen und haben eine regelmäßige Gitterstruktur, die intensive Röntgenstrahlen beugen kann. Durch den Beschuss mit Röntgenstrahlen entsteht ein charakteristisches Beugungsmuster, aus dem die Proteinstruktur errechnet werden kann.

Im Ergebnis zeigte die Strukturanalyse interessante Unterschiede zu der entfernt verwandten RNA-Polymerase II (Pol II), die die Baupläne für die Proteinsynthese liefert. Die Struktur von Pol II konnte Cramer bereits im Jahr 2000 während seiner Zeit als Postdoktorand an der amerikanischen Universität Stanford aufklären.

Türöffner für das aktive Zentrum

Pol I unterscheidet sich von Pol II unter anderem dadurch, dass sie zusätzliche Elemente im aktiven Zentrum enthält. Die zusätzlichen Strukturen ermöglichen die Regulation des Enzyms, indem sie dafür sorgen, dass ein tiefer Spalt, der das aktive Zentrum beherbergt, sowohl eine „geschlossene“ als auch eine „geöffnete“ Form annehmen kann. Da das Enzym mit offenem Spalt inaktiv ist, vermuten die Wissenschaftler, dass Pol I mithilfe dieses Regulationsmechanismus gehemmt wird, um unkontrolliertes Zellwachstum zu verhindern. Diese Ergebnisse könnten für die Entwicklung von Krebsmedikamenten relevant werden, die darauf abzielen, das Zellwachstum zu verlangsamen.

„Vermutlich haben wir mit dem Wechsel zwischen inaktivem und
aktivem Zustand unerwartet einen generellen Mechanismus für die Regulation genetischer Information in der Zelle entdeckt“, sagt Cramer. Als nächstes werden die Wissenschaftler untersuchen, wie Polymerasen ihre Zielgene erkennen. So wollen sie verstehen, warum verwandte Polymerasen nur jeweils eine Art von RNA herstellen. Langfristig soll in einem molekularen Film gezeigt werden, wie ein Gen angeschaltet wird, wenn es in der Zelle benötigt wird.

(Nature 2013)göd

Publikation:
RNA polymerase I structure and transcription regulation
Christoph Engel, Sarah Sainsbury, Alan C. Cheung, Dirk Kostrewa, and Patrick Cramer

Nature 2013

Kontakt:
Prof. Dr. Patrick Cramer
Genzentrum der LMU
Tel.: (+49) 89-2180-76965 (Sekretariat)
Fax: (+49) 89-2180-76998
cramer@genzentrum.lmu.de
http://www.cramer.genzentrum.lmu.de/

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen