Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekularbiologe etabliert "chemische Genetik" zur Steuerung von Pflanzenhormonen

10.08.2009
Der Pflanzenforscher Tobias Sieberer von den Max F. Perutz Laboratories der Universität Wien beleuchtet in seiner Forschungsarbeit die Kommunikation von Pflanzenzellen durch eine neu identifizierte Klasse von Hormonen, den so genannten Strigolaktonen.

Auf der Suche nach chemischen Substanzen, die diesen Signalweg gezielt beeinflussen können, etabliert er eine Screening-Plattform die das Testen tausender verschiedener Moleküle ermöglicht. Gefördert wird das Projekt vom Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF).

Strigolaktone sind Pflanzenhormone, die erstmals beim Befall des pflanzlichen Parasits "Striga" entdeckt wurden. Nur Pflanzen, die Strigolaktone bilden, werden von den Parasiten befallen und zugrunde gerichtet. Strigolaktone ermöglichen es Pflanzen darüber hinaus, mit Pilzen Symbiosen eingehen zu können, um dadurch um zusätzliche Nährstoffe aus dem Boden aufzunehmen. Die dritte derzeit bekannte Wirkung erzielen Strigolaktone bei der Ausbildung von Sprossverzweigungen. Hemmt man die Bildung des Strigolakton-Hormon, steigt die Zahl der Sprossverzweigungen im Experiment.

Eine gezielte Steuerung aller drei bekannten Wirkungen der Strigolaktone hätte hohes Potential in landwirtschaftlichen Anwendungen. Gerade in Ländern mit Lebensmittelknappheit könnte Parasitenbefall verhindert und der Ertrag erhöht werden. Weiters ist die Verzweigungsrate von Kulturpflanzen ein wichtiges Züchtungsmerkmal, das Quantität und Qualität der Ernte massiv beeinflusst.

Auf der Suche nach einer Substanz mit gezielter Wirkung

"Wir wollen Substanzen finden, die die Strigolakton-Wirkung entweder blockieren oder anregen, um sie danach gezielt je nach Bedarf einzusetzen", beschreibt Tobias Sieberer das interdisziplinäre Projekt, das vom WWTF gefördert wird. Sieberer und seine Projektpartner Gang Dong von den Max F. Perutz Laboratories und Gerhard Ecker vom Department für medizinische Chemie der Universität Wien wählen einen innovativen Ansatz: Virtuelles und reelles "High-throughput Screening" einer Vielzahl an chemischen Substanzen. Gang Dong ist Strukturbiologe und wird die 3D-Struktur der Proteine des Strigolakton-Biosynthesewegs aufklären. In Gerhard Eckers virtueller Datenbank von 3D- Strukturen bekannter kleiner Moleküle werden die Proteinmodelle auf mögliche Inhibitoren durchsucht. Mit dieser eingeschränkten Auswahl an strukturell passenden Inhibitor-Kandidaten werden im Anschluss weitere Funktionstests in der Modellpflanze Arabidopsis thaliana (Ackerschmalwand) gemacht.

Ein zweiter Ansatz zur Suche nach Wirkstoffen wird mit Hilfe der Arabidopsis-Pflanze durchgeführt. "Das Projekt ermöglicht die Anschaffung einer chemischen Bibliothek mit über 30.000 strukturell unterschiedlichen Molekülklassen. Wir lassen die Pflanzen in Gegenwart je einer dieser Substanzen unter Laborbedingungen wachsen", erläutert der Pflanzenforscher seinen Teil des Projektes. Die Labor-Version der Ackerschmalwand trägt ein so genanntes Reportergen. Beeinflusst die chemische Substanz die Strigolaktone in der Pflanze, dann gibt das Reportergen ein Zeichen ab, die Pflanze fluoresziert.

Bakterium hilft bei Pflanzenforschung

Auch das Bakterium Escherichia coli machen sich die Wissenschafter auf ihrer Suche nach der Substanz zur Strigolakton-Steuerung zu Nutze. Ein Laborstamm des Bakteriums produziert Betakarotin, ein Farbstoff der u.a. in Karotten vorkommt, und wächst daher als orange Kolonie. Mit Hilfe molekularbiologischer Techniken bringen die Forscher die Proteine der Strigolakton-Biosynthese in das Bakterium ein. Sind die Proteine aktiv, erkennen sie das Betacarotin als Substrat und bauen es ab und die Escherichia coli-Kolonien bleiben farblos. Nun testen die Forscher wieder verschiedene chemische Substanzen in Gegenwart der Bakterien. Inhibitor-Moleküle der Strigolakton-Biosynthese sind an den deutlich orangen Kolonien zu erkennen, denn die Aktivität der Biosyntheseproteine ist durch die chemische Substanz unterdrückt, die Bakterien häufen wieder Betakarotin an und werden orange.

Ergebnisse des interdisziplinären Projekts für Grundlagenforschung und Anwendung wichtig

Das Projekt ermöglicht somit die Etablierung der österreichweit ersten akademischen Einrichtung, die die Anwendung einer solch umfassenden chemischen Bibliothek erlaubt. In pharmazeutischen Unternehmen sind Bibliotheken dieser Art routinemäßig für die Medikamentensuche in Verwendung. Für ForscherInnen in öffentlichen Einrichtungen ist deren Nutzung jedoch kostenintensiv und erzielte Forschungsergebnisse unterliegen komplizierten Patentbestimmungen. "Unsere Datenbank soll interessierten Wissenschaftern aus dem Wiener Raum in Form von Kooperationen zur Verfügung stehen", erläutert Sieberer die Möglichkeit auch viele andere Modellorganismen mit dieser Bibliothek zu erforschen. Ergebnisse dieser "chemischen Genetik" dienen sowohl der Grundlagenforschung als auch der angewandten Forschung. Im Falle des Strigolakton-Projekts bedeutet dies, dass die gefundenen Inhibitoren zur weiteren Erforschung der Grundmechanismen der Biosynthese und Signalweiterleitung des Hormons eingesetzt werden. Aber auch in der angewandten Forschung kann so ein Weg gesucht werden, um mit den Substanzen gezielt den Verzweigungsgrad der Sprossen oder etwa der Infektionsrate von Parasiten zu beeinflussen.

Pflanzenforschung in Wien stärken

Tobias Sieberer, geboren 1972 in Amstetten, studierte Genetik an der Universität Wien und promovierte 2003 im Fach Biotechnologie an der Universität für Bodenkultur. Mit der Unterstützung eines Erwin-Schrödinger-Stipendiums des FWF und eines EMBO-Langzeit-Stipendiums verbrachte er seinen Post-Doc-Aufenthalt an der Universität von York, Großbritannien. 2007 kehrte er als selbstständiger Gruppenleiter an die Max F. Perutz Laboratories zurück, wo er seine Stelle durch ein APART-Habilitationsstipendium der Akademie der Wissenschaften finanziert. "Molekulare Pflanzenwissenschaften haben im angelsächsischen Raum und den Benelux Staaten große Tradition, in Österreich befinden sie sich gerade erst im Aufbau. Hier mitzuwirken und den Standort Wien zu prägen, ist sehr spannend", bekräftigt Sieberer das Potenzial Wiens als internationalen Spitzen-Standort für sein Forschungsfeld. Eine unterstützende Rolle schreibt er hier der Förderlandschaft Österreichs und besonders dem WWTF zu. "Mit dem WWTF haben wir eine äußerst attraktive Förderinstitution in Wien, die speziell auch den Brückenschlag zwischen Grundlagenforschung und mittelfristiger Anwendung unterstützt". Wünschen würde er sich jedoch auch längerfristige Projektförderungen und insbesondere die Einführung eines "tenure track"-Systems für Nachwuchsforscher in Österreich die - so wie Sieberer selbst - ihre eigene Gruppe aufbauen und sich international etablieren.

Die Max F. Perutz Laboratories sind ein 2005 gegründetes Joint-Venture der Universität Wien und der Medizinischen Universität Wien am Campus Vienna Biocenter. Diese inter-universitäre Kooperation ist ein neuer und innovativer Ansatz um Forschung und Lehre an beiden Universitäten zu stärken. Am Institut in der Bohr-Gasse forschen 60 Arbeitsgruppen im Bereich Molekularbiologie. Seit 2007 leitet der Biochemiker Graham Warren das Institut. www.mfpl.ac.at

Rückfragehinweis:
Dr. Tobias Sieberer
Max F. Perutz Laboratories
Department für Mikrobiologie, Immunbiologie
und Genetik der Universität Wien
1030 Wien, Dr. Bohr-Gasse 9
T +43-1-4277-749 37
tobias.sieberer@univie.ac.at
Pamela Paulic
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
pamela.paulic@univie.ac.at

Alexandra Frey | idw
Weitere Informationen:
http://www.univie.ac.at/175

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demenz: Neue Substanz verbessert Gehirnfunktion
28.07.2017 | Technische Universität München

nachricht Mit einem Flow-Reaktor umweltschonend Wirkstoffe erzeugen
28.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences