Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moleküle nach dem Vorbild der Natur bauen

16.03.2011
Forscher aus Magdeburg, Mülheim und Uppsala haben Vorgänge in Enzymen untersucht, um die biologische Wasserstoffproduktion im Detail besser zu verstehen

Wasserstoff ist ein Energieträger der Zukunft und wird bereits als alternative Energiequelle, z.B. beim Betrieb von Kraftfahrzeugen, getestet. Manche Mikroorganismen, also Bakterien und Algen, können Wasserstoff bei Raumtemperatur erzeugen. Forscher verstehen immer besser, wie Bakterien Wasserstoff erzeugen und welche Rolle die Enzyme dabei spielen.

Wissenschaftler möchten die zugrunde liegen Prozesse nachvollziehen, um künftig mit künstlichen Systemen Wasserstoff produzieren zu können. In einem Kooperationsprojekt haben sich Forscher aus Magdeburg, Mühlheim und Uppsala der bakteriellen Wasserstofferzeugung gewidmet. Ihre Ergebnisse veröffentlichten sie kürzlich in der renommierten Fachzeitschrift Angewandte Chemie.

Das Enzym, das den Wasserstoff herstellt, heißt Hydrogenase. Forscher wollen die Vorgänge in diesem Enzym verstehen und weitere Anhaltspunkte finden, auf welche Weise die Natur Wasserstoff produziert. Die Eisenatome in der Hydrogenase ermöglichen die biochemischen Vorgänge. Obwohl es schon eine Struktur und zahlreiche spektroskopische Untersuchungen von diesem Enzym gibt, konnte immer noch nicht exakt geklärt werden, wie das aktive Zentrum des Enzyms genau aussieht. Erst wenn die Chemiker die Elektronenstruktur in den Metallzentren kennen, ist es ihnen auch möglich, die Enzyme gezielt zu verändern oder nachzubauen.

Schwedisches Design für Moleküle

Chemiker von der Universität Uppsala in Schweden haben jetzt ein Molekül im Labor hergestellt, das dem Vorbild des Enzyms genau nachempfunden ist. Diese Nachbauten der Natur sollen zukünftig als künstliche Systeme zur biotechnologischen Wasserstoffproduktion dienen. Wissenschaftler vom Max-Planck-Institut für bioanorganische Chemie in Mülheim haben am schwedischen Molekül aufwändige Messungen mit Elektronenspinresonanz (EPR) vorgenommen, um es genau zu untersuchen.

Von der Natur lernen

Die Analyse und Interpretation der Messergebnisse wurde erst möglich durch Computerberechnungen vom Max-Planck-Institut in Magdeburg. Dr. Matthias Stein modellierte die zu erwartenden Ergebnisse am Rechner. Werte, die bei den spektroskopischen Aufnahmen am ursprünglichen Enzym ermittelt wurden, wurden mit den berechneten Werten des Modells verglichen. Mit Hilfe der rechnerischen Simulation konnte erstmals die elektronische Struktur eines solchen [FeFe]-Modellkomplexes detailliert analysiert werden. Durch das Design der schwedischen Modellverbindung in Anlehnung an das Bakterium konnte erstmals eindeutig gezeigt werden, dass im Bakterium ein Stickstoffatom im aktiven Zentrum vorliegt. Dies hat wahrscheinlich eine große Bedeutung als Zwischenstufe im enzymatischen Mechanismus der Wasserstofferzeugung.

Aufs Detail schauen und das große Ganze im Blick

Matthias Stein, 39, forscht am Max-Planck-Institut für Dynamik komplexer technischer Systeme in Magdeburg und baut dort eine Nachwuchsgruppe auf. Er simuliert Wechselwirkungen in oder zwischen Molekülen auf verschiedenen Zeitskalen. Matthias Stein sieht seine Arbeit an der Schnittstelle zwischen Biologie, Chemie, Physik und mathematischen Modellierungen. Er möchte zelluläre Vorgänge und Veränderungen wie durch eine Lupe betrachten und auf atomarer Ebene verstehen.

Matthias Stein fasziniert es, “Experimente auf dem PC durchzuführen und verschiedene Modelle rechnerisch durchzuspielen.” Zu den Methoden, die er und seine Kollegen dabei einsetzen, zählen die Quantenmechanik, die molekulare und Brown‘sche Dynamik sowie die Bioinformatik und die Modellierung von Proteinstrukturen. Damit bringt er Werkzeuge in die Forschungsarbeit des Max-Planck-Institutes ein, die so vorher in Magdeburg nicht angewendet wurden. Am Rechner können somit nun Szenarien und Moleküle simuliert werden, die nicht oder nur schwer experimentell zugänglich sind. Um es den Wissenschaftlern zu ermöglichen, ihre aufwändigen Berechnungen durchzuführen, wird derzeit am Max-Planck-Institut Magdeburg ein leistungsfähiger Rechnercluster mit einer großen Rechenkapazität installiert.

Die Gruppe kooperiert eng mit den experimentell arbeitenden Fachgruppen des Max-Planck-Institutes unter anderem auf dem Gebiet der chemischen Prozesstechnik und der Biotechnologie, denn “die theoretischen Berechnungen müssen auch im Experiment bestätigt werden&rdquo, so Matthias Stein. Zukünftige Anknüpfungspunkte in seiner Arbeit sieht Matthias Stein auch in den Forschungsgebieten der Otto-von-Guericke-Universität Magdeburg.

Über Dr. rer. nat. Matthias Stein

Matthias Stein wurde 1971 in Berlin geboren. Von 1990 bis 1995 studierte er Chemie an der TU Berlin und der University of Manchester (UK). Dort erwarb er auch den Master of Science in Theoretischer Chemie. Er promovierte 2001 in Biophysikalischer Chemie unter anderem über den Reaktionsmechanismus der Hydrogenase. Es folgte ein Gastaufenthalt an der Königlich Technischen Hochschule Stockholm, Schweden, von 2003 bis 2005. In einem Biotechunternehmen arbeitete er zunächst als Gruppenleiter, dann als Gründer und Geschäftsführer in der computergestützten Entwicklung von Pharmazeutika. Von 2005 bis 2010 war er an dem von der Klaus Tschira Stiftung geförderten Forschungsinstitut EML Research gGmbH, jetzt Heidelberger Institut für Theoretische Studien (HITS).

Seit Juli 2010 leitet Matthias Stein die Nachwuchsgruppe Molecular Simulations and Design am Max-Planck-Institut für Dynamik komplexer technischer Systeme in Magdeburg. Matthias Stein hat mehrere wissenschaftliche Auszeichnungen erhalten und ist Mitglied in verschiedenen wissenschaftlichen Vereinigungen, u.a. in der Gesellschaft Deutscher Chemiker. Er ist verheiratet und hat drei Kinder.

Originalveröffentlichung

Özlen F. Erdem, Lennart Schwartz, Matthias Stein, Alexey Silakov, Sandeep Kaur-Ghumaan, Ping Huang, Sascha Ott, Edward J. Reijerse, Wolfgang Lubitz:
Ein Modell des aktiven Zentrums der [FeFe]-Hydrogenasen mit biologisch relevanter Azadithiolat-Brücke: eine spektroskopische und theoretische Untersuchung

Angewandte Chemie, 7. Februar 2011, (DOI: 10.1002/ange.201006244), 123, 1475-1479.

Ihr Kontakt zum Max-Planck-Institut Magdeburg
Dr. Matthias Stein, M.Sc.
Max-Planck-Institut für Dynamik komplexer technischer Systeme
Sandtorstraße 1
D-39106 Magdeburg
Tel: +49-391-6110-436
Fax: +49-391-6110-403
E-mail: matthias.stein@mpi-magdeburg.mpg.de
Gabriele Krätzer M.A.
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Dynamik komplexer technischer Systeme
Sandtorstraße 1
D-39106 Magdeburg
Tel: +49-391-6110-144
Fax: +49-391-6110-518
E-mail: kraetzer@mpi-magdeburg.mpg.de

Gabriele Krätzer | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-magdeburg.mpg.de
http://www.de.mpi-magdeburg.mpg.de/Public_Relations/Pressemitteilungen/Pressemitteilung_Hydrogenase_MSD_160311.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Spot auf die Maschinerie des Lebens
23.08.2017 | Max-Planck-Institut für die Physik des Lichts, Erlangen

nachricht Immunsystem kann durch gezielte Manipulation des Zellstoffwechsels reguliert werden
23.08.2017 | Medical University of Vienna

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie