Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moleküle verformen sich bei Nässe

21.11.2016

Breitband-Rotationsspektroskopie enthüllt Strukturänderungen isolierter, gasförmiger Moleküle bei ihrer Bindung an Wasser

In zwei kürzlich erschienenen Veröffentlichungen im Journal of Chemical Physics und im Journal of Physical Chemistry Letters konnten Forscher um Melanie Schnell vom Max-Planck-Institut für Struktur und Dynamik der Materie am CFEL und vom Hamburg Centre for Ultrafast Imaging (CUI) zeigen, dass Wasser eine Strukturänderung von flexiblen Molekülen begünstigt – hier an den chemisch faszinierenden Beispielen Kronenether und Biphenyl-Moleküle studiert.


Die bevorzugte Struktur eines Kronenethers verändert sich, wenn Wassermoleküle daran binden (gestrichelte Linien).

© C. Pérez et al.


Ein Draht aus zwei Wassermolekülen verbindet die beiden Ringe eines Biphenyl-Systems (gestrichelte Linien) und verändert den Winkel zwischen den beiden Ringen (roter Pfeil).

© S. R. Domingos et al.

Kronenether sind entscheidende Systeme in Katalyse-, Trennungs- und Einschlussprozessen, während Biphenyl-basierte Systeme in der asymmetrischen Synthese und im Wirkstoffdesign für Arzneimittel Verwendung finden.

Wasser hat einen tiefgreifenden Einfluss auf unsere Welt. Durch seine bekannte – aber nicht vollends verstandene – Rolle in der Vermittlung von Proteinfaltungsdynamik und Protonentransport in Membranen nimmt Wasser eine Schlüsselrolle ein; es beeinflusst die Mechanik vieler biologischer und synthetischer Prozesse. In den aktuellen Studien verwenden die Wissenschaftler hochaufgelöste Rotationsspektroskopie, um die strukturellen Auswirkungen zu untersuchen, die Wasser in zwei Arten von Molekülsystemen hervorruft, welche im Bereich der Chemie unterschiedliche Rollen spielen.

Isolierte mikrosolvatisierte Moleküle in der Gasphase haben sich zu einem bevorzugten Untersuchungsgegenstand entwickelt, um die schrittweise Hydration molekularer Systeme aufzuzeigen. Die Hamburger Gruppe von Melanie Schnell folgt diesem Ansatz für die Aufdeckung der Effekte auf organische Moleküle, wenn sich die ersten Wassermoleküle an ihnen anlagern und die Grundlage für die sogenannte erste Solvatisierungshülle bilden.

Kronenether sind zyklische Moleküle, die von ihrer Struktur her einer Krone ähneln. Sie besitzen eine außergewöhnliche Selektivität für den Einschluss von Kationen innerhalb der Krone. Diese Funktion kann sowohl nützlich als auch schädlich sein, je nach Größe der Krone und der sich daraus ergebenden Fähigkeit, kleinere oder größere Kationen wie Kalium, Natrium oder Lithium an sich zu binden. Kronenether sind daher hochgradig funktionale Systeme. In der aktuellen Arbeit entdeckten die Autoren, dass sich die bevorzugte Gestalt der Kronenether bei der Bindung mit Wasser verändert.

„Die unerwartete strukturelle Veränderung durch die Hydration der Krone offenbart neue Möglichkeiten für Wirt-Gast-Wechselwirkungen“, sagt Cristóbal Pérez, Postdoktorand am MPSD und Erstautor der Arbeit. Die erwartete Effizienz für den Einfang anderer Molekülsorten kann sich durch die Anwesenheit von Wasser verändern. Angesichts der Häufigkeit von Wasser auf molekularer Ebene, auf der viele biologische Prozesse ablaufen, ist dies eine wichtige Erkenntnis für Chemiker, die sich mit Katalyse befassen und Kronenether verwenden.

Biphenyl-basierte Systeme bestehen im Zentrum aus zwei Benzolringen (C6H6), die über eine Achse verbunden sind. Durch Überwindung einer niedrigen Energiebarriere können sich die beiden Ringe gegeneinander verdrehen. Drehungen mit und entgegen dem Uhrzeigersinn erzeugen Spiegelbilder desselben Moleküls, welche sich nicht überlagern lassen und daher als chiral bezeichnet werden. Die Fähigkeit, Spiegelbildvarianten chiraler Moleküle zu identifizieren und zuzuordnen, ist ein entscheidender Schritt im Wirkstoffdesign der pharmazeutischen Industrie. Biphenyle kommen beispielsweise in Wirkstoffen gegen Tuberkulose vor.

In der aktuellen Studie wird gezeigt, dass das Biphenyl-System bei Hydration zwei zusammenhängende Wassermoleküle anlagert, die die Autoren „water-wire“ nennen. Dieser „Wasser-Draht“ verbindet die beiden Biphenyl-Ringe und fixiert folglich ihre Position zueinander. Mit diesem Feststellmechanismus durch die Gegenwart des Wassers geht eine messbare Veränderung im Winkel zwischen den Ringen einher. „Das beobachtete Phänomen liefert uns neue Hinweise darüber, wie Wasser die Wechselwirkungen zwischen einem Molekül und einem potentiellen Rezeptor vermitteln kann“, sagt Sérgio Domingos, Postdoktorand am MPSD und Erstautor der Arbeit. Die beobachteten Wasser-induzierten Strukturänderungen sind aufschlussreich für die Rolle der Hydration bei der Regulierung komplexerer biologischer Prozesse, welche in Umgebungen stattfinden, in denen Wasser das vorherrschende Medium ist.

Ansprechpartner:

Dr. Cristóbal Pérez
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6233
cristobal.perez@mpsd.mpg.de

Dr. Sérgio Domingos
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6233
sergio.domingos@mpsd.mpg.de

PD Dr. Melanie Schnell
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6240
melanie.schnell@mpsd.mpg.de

Originalpublikationen:

C. Pérez, J. C. López, S. Blanco, and M. Schnell, "Water-Induced Structural Changes in Crown Ethers from Broadband Rotational Spectroscopy," The Journal of Physical Chemistry Letters 7 (20), 4053-4058 (2016); DOI: 10.1021/acs.jpclett.6b01939

S. R. Domingos, C. Pérez, and M. Schnell, "Communication: Structural locking mediated by a water wire: A high-resolution rotational spectroscopy study on hydrated forms of a chiral biphenyl derivative," The Journal of Chemical Physics 145 (16), 161103 (2016); DOI: 10.1063/1.4966584

Weitere Informationen:

https://dx.doi.org/10.1021/acs.jpclett.6b01939 Originalpublikation
https://dx.doi.org/10.1063/1.4966584 Originalpublikation
http://www.mpsd.mpg.de/research/rg/ccm Forschungsgruppe von PD Dr. Melanie Schnell
http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften