Moleküle unter Spannung: Einzigartige mikroskopische Aufnahmen liefern neue Einblicke in ionische Flüssigkeiten

Die Forschenden nutzen einen speziellen Probenhalter, um die ionischen Flüssigkeiten unter dem Mikroskop zu untersuchen. Foto/Copyright: Denis Schimmelpfennig

Darauf basierende Erkenntnisse könnten zu verbesserten Batterien und energieeffizienter Beschichtungstechnologie oder Solartechnik führen.

Ionische Flüssigkeiten sind Schmelzen von organischen Salzen, die sogar bei Raumtemperatur flüssig sein können, obwohl sie kein Wasser enthalten. Gerade dieser Umstand macht sie für viele Experimente und industrielle Prozesse sehr interessant. Denn Wasser wird an Elektroden schon bei geringen Spannungen elektrolytisch zersetzt.

Dies überlagert und behindert andere, technisch wichtige elektrochemische Reaktionen. Zudem legen sich die Wassermoleküle um die Ionen und greifen in viele chemische Prozesse ein. In den ionischen Flüssigkeiten, die nur aus Ionen bestehen, sind daher völlig neue Reaktionen möglich.

In den letzten Jahren kam es zu einem wahren Boom dieses Forschungs-gebiets, der zur Entdeckung einer ganzen Reihe neuer ionischer Flüssigkeiten führte. Ihre technischen Einsatzmöglichkeiten sind vielfältig: Als Elektrolyt in Batterien, Brennstoffzellen oder Farbstoffsolarzellen und als galvanisches Bad für die Abscheidung von dünnen Aluminiumschichten oder Halbleiter¬materialien. Dass sie bei Raumtemperatur funktionieren, macht sie für viele Anwendungen einfacher handhabbar und spart obendrein Energie.

Bis heute existierten jedoch kaum gesicherte Erkenntnisse darüber, was bei elektrochemischen Reaktionen der ionischen Flüssigkeiten auf molekularer Ebene passiert oder wie sich die Moleküle an der Oberfläche der Elektrode anordnen. Während dies in wasserhaltigen Flüssigkeiten mit modernen Mikroskopieverfahren schon Jahrzehnte lang möglich war, gelang das in ionischen Flüssigkeiten bislang fast nie:

„Die Moleküle bewegen sich häufig einfach zu schnell für konventionelle Geräte“, sagt Professor Olaf Magnussen von der Uni Kiel. Mit einem selbst gebauten Rastertunnelmikroskop konnte sein Team diesem Geheimnis nun auf die Spur kommen.

Videos, die von Magnussens Mitarbeiterin Dr. Rui Wen aufgenommen wurden, lassen erkennen, wie die weniger als ein Nanometer großen Moleküle der Flüssigkeit auf das Anlegen einer elektrischen Spannung an eine Goldelektrode reagieren. Ist die Oberfläche quasi ungeladen, zeigen die Moleküle ein für Flüssigkeiten typisches Verhalten: Sie sind ungeordnet und hochbeweglich.

Mit zunehmender Spannung legen die Moleküle sich dann flach auf die Oberfläche und bilden Reihen, bevor sie sich schließlich aufstellen. Gleichzeitig werden sie immer unbeweglicher. „Die Aufnahmen sind einzigartig und helfen uns Theorien zu entwickeln, mit denen sich die Elektrodenprozesse in ionischen Flüssigkeiten besser beschreiben lassen“, sagt Physiker Magnussen. „Dies ist nicht nur für die Grundlagenforschung wichtig, sondern auch für konkrete Anwendungen.“

Um an der Kieler Universität forschen zu können, hatte Rui Wen sich für ein Stipendium der Alexander von Humboldt-Stiftung beworben und das Projekt bewilligt bekommen. „Die besondere Mikroskopiemethode hat mich sehr gereizt nach Kiel zu kommen“, sagt Wen. In den zwei Jahren ihres Aufenthalts in Kiel untersuchte die Chinesin eine ganze Reihe ionischer Flüssigkeiten, unter anderen Flüssigkeiten mit BMP Ionen, die Thema der gerade veröffentlichten Studie sind. Besonders die Batterieforschung interessiert sich für BMP.

Die Kieler Forschungsergebnisse könnten dazu führen, dass ionische Flüssig-keiten besser verstanden und für umweltfreundlichere Herstellungs¬prozesse maßgeschneidert werden können. Für Rui Wen persönlich haben sich die Untersuchungen bereits direkt bezahlt gemacht: Sie erhielt vor kurzem ein Angebot zum Aufbau einer eigenen Arbeitsgruppe an der chinesischen Akademie der Wissenschaften in Peking.

Bilder stehen zum Download bereit:
http://www.uni-kiel.de/download/pm/2015/2015-135-1.jpg
Bildunterschrift: Rui Wen hat einzigartige Aufnahmen mit Kieler Mikroskopietechnik erstellt. Sie können helfen, Batterien zu verbessern und industrielle Prozesse umweltfreundlicher zu machen.
Foto/Copyright: Denis Schimmelpfennig

http://www.uni-kie.de/download/pm/2015/2015-135-2.jpg
Bildunterschrift: Unter der Leitung von Professor Olaf Magnussen fanden Wens Forschungen zu ionischen Flüssigkeiten an einem Video-Rastertunnelmikroskop statt.
Foto/Copyright: Denis Schimmelpfennig

http://www.uni-kiel.de/download/pm/2015/2015-135-3.jpg
Bildunterschrift: Die Forschenden nutzen einen speziellen Probenhalter, um die ionischen Flüssigkeiten unter dem Mikroskop zu untersuchen.
Foto/Copyright: Denis Schimmelpfennig

http://www.uni-kiel.de/download/pm/2015/2015-135-4.mp4
Video: Videomikroskopische Aufnahmen einer negativ geladenen Goldelektrode in einer ionischen Flüssigkeit. Das fluktuierende quadratische Muster wird durch die BMP Moleküle der Flüssigkeit gebildet, die sich unter diesen Bedingungen geordnet an die Metalloberfläche anlagern.
Video/Copyright: AG Magnussen

Originalpublikation:
Potential-dependent Adlayer Structure and Dynamics at the Ionic Liquid
/ Au(111) Interface: A Molecular Scale In Situ Video-STM study. Rui Wen, Björn Rahn, and Olaf. M. Magnussen. Angew. Chem. Int, Ed. DOI: 10.1002/anie.201501715

Potentialabhängige Struktur und Dynamik molekularer Adschichten an der Grenzfläche zwischen ionischen Flüssigkeiten und Au(111): Eine in situ Video-STM Studie. Rui Wen, Björn Rahn, and Olaf. M. Magnussen. Angew. Chem. DOI: 10.1002/ange.201501715

Kontakt:
Prof. Dr. Olaf Magnussen
Institut für Experimentelle und Angewandte Physik
Tel.: 0431/880 5579
E-Mail: magnussen@physik.uni-kiel.de

Media Contact

Dr. Boris Pawlowski Christian-Albrechts-Universität zu Kiel

Weitere Informationen:

http://www.uni-kiel.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Erstmals 6G-Mobilfunk in Alpen getestet

Forschende der Universität Stuttgart erzielen leistungsstärkste Verbindung. Notrufe selbst in entlegenen Gegenden absetzen und dabei hohe Datenmengen in Echtzeit übertragen? Das soll möglich werden mit der sechsten Mobilfunkgeneration – kurz…

Neues Sensornetzwerk registriert ungewöhnliches Schwarmbeben im Vogtland

Das soeben fertig installierte Überwachungsnetz aus seismischen Sensoren in Bohrlöchern zeichnete Tausende Erdbebensignale auf – ein einzigartiger Datensatz zur Erforschung der Ursache von Schwarmbeben. Seit dem 20. März registriert ein…

Bestandsmanagement optimieren

Crateflow ermöglicht präzise KI-basierte Nachfrageprognosen. Eine zentrale Herausforderung für Unternehmen liegt darin, Über- und Unterbestände zu kontrollieren und Lieferketten störungsresistent zu gestalten. Dabei helfen Nachfrage-Prognosen, die Faktoren wie Lagerbestände, Bestellmengen,…

Partner & Förderer