Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Moleküle sich selbstständig organisieren

11.11.2008
Dirk G. Kurth ist neuer Professor an der Universität Würzburg. Der Chemiker bringt Moleküle dazu, dass sie sich ganz von alleine zu Materialien organisieren und dabei interessante neue Eigenschaften entwickeln.

Aus der Biologie kennt man das Prinzip: Biomoleküle lagern sich in wässriger Lösung selbstständig aneinander und bilden so DNS, Proteine und Zellen, die molekularen Maschinen des Lebens.

Die Chemie hat diese Eigenschaft von Molekülen vor einigen Jahren für sich entdeckt - und arbeitet seitdem intensiv auf dem Gebiet. "Supramolekulare Chemie" lautet das Stichwort dazu, und supramolekulare Funktionsmaterialien sind die Stoffe, mit denen sich Dirk G. Kurth befasst.

Brillen reparieren sich selbst

"Moleküle gruppieren sich spontan zusammen und bilden einen Verbund, der dynamisch und flexibel ist und sich an veränderte Bedingungen anpassen kann", schwärmt Kurth von den Stoffen, mit denen er arbeitet. Ein Brillenglas, das mit einem solchen Material beschichtet ist, muss nicht weggeschmissen werden, wenn es einen Kratzer erhalten hat. Die Moleküle in der Beschichtung lagern sich stattdessen von ganz alleine um, organisieren sich von neuem und reparieren so die schadhafte Stelle.

Fensterscheiben verdunkeln sich

Oder, anderes Beispiel: "Wir arbeiten mit Materialien, die schaltbare magnetische Eigenschaften besitzen und auf Licht reagieren", sagt der 44-Jährige. Auf eine Fensterscheibe aufgebracht, verdunkelt sich die Schicht, wenn viel Licht auf sie fällt, und wird, beispielsweise in der Nacht, wieder hell und durchlässig. "Zusätzlich ist das Material auch noch regulierbar", so der Chemiker. Wem es also zu hell oder zu dunkel sein sollte, der kann per Knopfdruck den gewünschten Grad an Lichtdurchlässigkeit individuell einstellen.

Die Eigenschaft, sich selbst zu organisieren, ist es, was Kurth an den supramolekularen Funktionsmaterialien so fasziniert. "Die Moleküle sind ein wenig wie Lego-Bausteine. Sie lassen sich problemlos in jeder gewünschten Art und Weise zusammensetzen. Nur mit dem Unterschied, dass sich diese Bausteine von ganz alleine untereinander verbinden. Diese Materialien entstehen von selbst", so der Chemiker. "Außerdem", so sagt Kurth: "Da sich Molekül an Molekül lagert, gibt es eine Präzision von Millionstel Millimetern gleich dazu, dies entspricht in etwa den Dimensionen eines Moleküls. So entstehen maßgeschneiderte Materialien für die Produkte von morgen. " Produkte, die sehr unterschiedliche Eigenschaften zeigen können: Fügt der Chemiker beispielsweise Metall-Ionen in das Molekülbad hinzu, können sie andere Farben annehmen, magnetisch werden und dergleichen mehr.

Eine internationale Karriere

Vor wenigen Wochen erst hat Dirk G. Kurth seinen Arbeitsplatz am Lehrstuhl für die Chemische Technologie der Materialsynthese am Röntgenring bezogen. Zuvor hatte ihn seine Ausbildung rund um den Globus geführt: Studium in Köln und Aachen. Diplomarbeit an der University of New Mexico in Albuquerque. Dort begann er auch mit der Promotion, die er an der Purdue University, West Lafayette, Indiana (USA) abschloss.

Zwischen 1994 und 1996 arbeitete er als Postdoktorand an der Université Louis Pasteur in Straßburg, ab 1996 war er Projektleiter am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam. Dort hat er eine Gruppe aufgebaut, die Struktur-Eigenschaftsbeziehungen von supramolekularen Funktionsmaterialien erforschte.

Im Jahre 2003 habilitierte Kurth an der Universität Potsdam in Physikalischer Chemie und war dort seit 2004 Privatdozent. 2004 wurde er außerdem zum jüngsten und ersten ausländischen Direktor des "National Institute of Materials Science", Tsukuba, Japan ernannt.

In Würzburg wird sich Kurth neben seiner Forschung in der Lehre engagieren und am weiteren Auf- und Ausbau des Studiengangs "Technologie der Funktionswerkstoffe" beteiligen. Er ist bereits jetzt Studiendekan für dieses Fach.

Kontakt: Prof. Dr. Dirk G. Kurth, T (0931) 31-2631, dirk.kurth@matsyn.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de/fuer/studierende/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie