Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moleküle im Rampenlicht

06.02.2012
An der Schnittstelle zwischen Chemie und Physik untersucht Patrick Nürnberger mit Laserblitzen chemische Reaktionen in unvorstellbar kurzen Zeiträumen. Den Aufbau seiner eigenen Nachwuchsgruppe finanziert die Deutsche Forschungsgemeinschaft mit 1,2 Millionen Euro.
Die Zeiträume, mit denen sich Patrick Nürnberger beschäftigt, sind so kurz, dass die Bezeichnung „Räume“ definitiv nicht angebracht ist. Der Physiker erforscht Prozesse, die sich im Femtosekundenbereich vollziehen. Eine Femtosekunde, das ist der milliardste Teil des Millionstels einer Sekunde. Zum Vergleich: Licht, das mit 300.000 Kilometern pro Sekunde schnellste Objekt im Universum, legt in einer Femtosekunde nicht einmal einen Tausendstel Millimeter zurück. Licht übernimmt in Nürnbergers Experimenten allerdings eine tragende Rolle.

„Wir schicken Laserlicht auf bestimmte Moleküle und untersuchen dann deren Reaktion“, beschreibt Nürnberger das Prinzip seiner Forschung. Was so einfach klingt, ist in Wirklichkeit mit einem enormen technischen Aufwand verbunden, langen Sitzungen im Labor und ausgiebigem Grübeln über den Messdaten. Nürnberger arbeitet mit Molekülen, die eine photochemische Reaktion zeigen, wenn Licht auf sie fällt. Beispielsweise können Photolacke reagieren, wenn Licht auf sie trifft – eine Eigenschaft, die in der Mikrochip-Herstellung Verwendung findet. Photochemische Reaktionen begegnen einem auch im Alltag, so etwa wenn der Aufkleber auf der Heckklappe eines Autos mit den Jahren verblasst.

Ein genaues Bild einer chemischen Reaktion

Nürnberger und sein Team interessieren sich dafür, was genau in den jeweiligen Molekülen vor sich geht. Dafür schicken sie für wenige Femtosekunden einen Laserpuls auf diese Substanzen, der die Reaktion in Gang setzt. Ein zweiter Laserpuls folgt im Abstand von ebenfalls wenigen Femto- bis Nanosekunden und liefert den Physikern eine Art Bild über die Vorgänge in dem Molekül.
„Solch ein Molekül besteht ja in der Regel aus vielen Bausteinen. In der Photolyse brechen möglicherweise einer oder mehrere davon ab, der Rest orientiert sich neu, kurzzeitig tauchen reaktive Zwischenprodukte auf“, erklärt Nürnberger. Wann genau solche Zwischenprodukte auftauchen, wie lange sie existieren, was anschließend mit ihnen passiert – das ist ein Teil der Forschung von Nürnbergers Arbeitsgruppe.

Reaktionen gezielt beeinflussen

Der zweite Teil geht einen Schritt weiter. Dabei begnügen sich die Wissenschaftler nicht damit, die Reaktion zu beobachten; in diesem Fall wollen sie sie auch noch beeinflussen. Dabei setzen sie auf unterschiedliche Techniken, die ganz nach Bedarf miteinander kombinierbar sind. Beispielsweise teilen sie den Laserpuls in Licht unterschiedlicher Wellenlänge auf: So trifft etwa erst blaues Licht auf das Molekül und regt es an; kurz darauf folgt ein grüner Lichtblitz, der eine weiterführende Reaktion in Gang setzt.
Eine andere Variante sieht so aus: „Mit einem Lichtpuls im Infrarotbereich wollen wir selektiv bestimmte Teile des Moleküls in Schwingung versetzen“, erklärt Nürnberger. Weil der nächste Laserpuls wiederum nur wenige Femtosekunden später folgt, hat das Molekül keine Chance, diese Energie vorher abzugeben. „Solche Versuche können nützlich sein, wenn man wissen will, nach welchem Mechanismus ein bestimmtes Zwischenprodukt überhaupt entsteht“, sagt der Physiker. Auch hoffen die Wissenschaftler, auf diese Weise irgendwann einmal den Ablauf der Reaktion gezielt beeinflussen und so mit Licht kontrollieren zu können.

Grundlagenforschung zwischen Physik und Chemie

Die Forschung auf diesem Gebiet steht noch ziemlich am Anfang; vor rund 15 Jahren gab es die ersten Experimente zur sogenannten „Quantenkontrolle“. Grundlagenforschung sei seine Arbeit, sagt Nürnberger – auch wenn natürlich immer der Hintergedanke eine Rolle spielt, dass die Erkenntnisse dieser Untersuchungen von Nutzen sein können, wenn es darum geht, Moleküle zu finden, die bestimmte Eigenschaften besitzen. „Natürlich hoffen wir auch, dass es uns gelingt, durch die richtige Kombination von Laserpulsen die chemische Reaktion in eine gewünschte Richtung zu lenken“, sagt er.

Patrick Nürnberger hat Physik studiert, forscht jetzt am Institut für Physikalische und Theoretische Chemie und ist Mitglied der Fakultät für Chemie und Pharmazie. Ihm gefällt es, an der Schnittstelle dieser beiden Wissenschaften zu arbeiten – mit Methoden aus der Physik chemische Prozesse zu untersuchen.
Zur Person

Patrick Nürnberger wurde 1978 in Hof geboren; 1999 hat er in Würzburg das Physikstudium begonnen. Noch bevor er das Diplom in der Tasche hatte, ist er an die State University of New York at Stony Brook gegangen, um dort einen Master zu machen. Seine Suche nach einem Thema brachte ihn in Kontakt mit einem jungen Professor, der ebenfalls neu an der State University war. Dieser bot ihm an, gemeinsam mit ihm seinen Laser aufzubauen. Er überzeugte Nürnberger, indem er erklärte, der Nachteil an dieser Arbeit sei: „Du fängst bei null an.“ Und der Vorteil: „Du fängst bei null an“. „Wir haben also die Komponenten gekauft und den Laser selbst aufgebaut. Danach hatte ich die Technik der Laserspektroskopie von Grund auf verstanden und bin dann voller Begeisterung bei dem Thema geblieben“, erinnert sich Nürnberger.

Zurück aus Stony Brook legte er im Jahr 2004 in Würzburg sein Diplom ab; 2007 promovierte er mit einer Arbeit auf dem Gebiet der adaptiven Quantenkontrolle von Molekülen. Von 2008 bis 2010 forschte er als Stipendiat der Leopoldina am Laboratoire d'Optique et Biosciences der Ecole Polytechnique in Paris. Dort untersuchte er die primären Reaktionsschritte unmittelbar nach der Photolyse von angelagerten Gasmolekülen in sogenannten Hämproteinen, zu denen auch der Blutfarbstoff Hämoglobin gehört.

Das Emmy-Noether-Programm

Seit dem vergangenen Jahr baut Nürnberger an der Universität Würzburg seine eigene Nachwuchsgruppe auf. Die Deutsche Forschungsgemeinschaft unterstützt ihn dabei im Rahmen des Emmy-Noether-Programms in den kommenden fünf Jahren mit rund 1,2 Millionen Euro. Das Programm soll „jungen Nachwuchswissenschaftlern einen Weg zu früher wissenschaftlicher Selbständigkeit eröffnen“; durch die Leitung einer eigenen Nachwuchsgruppe sollen promovierte Forscher „die Befähigung zum Hochschullehrer erwerben“, wie es in der Beschreibung der DFG heißt.

Dass Patrick Nürnberger sich für die Universität Würzburg entschieden hat, kommt nicht von ungefähr. „Das Institut für Physikalische und Theoretische Chemie ist hervorragend mit den Apparaten ausgestattet, die ich für meine Arbeit benötige“, sagt er. Ein gewichtiges Argument; immerhin kann der Laser, den er bei seinen Untersuchungen einsetzt, gut und gerne eine halbe Million Euro kosten. Die Apparate allein machen es jedoch nicht aus. Auch das Umfeld stimme in Würzburg: „Als Nachwuchswissenschaftler ist man hier sehr gut integriert“.

Kontakt

Dr. Patrick Nürnberger, T: (0931) 31-86336,
E-Mail: nuernberger@phys-chemie.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de
http://www.phys-chemie.uni-wuerzburg.de/arbeitsgruppen/lehrstuhl_i_prof_t_brixner/startseite/mitarbeiter/mitarbeiterseiten/dr_patrick_n

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscherteam der Universität Bremen untersucht Korallenbleiche
24.04.2017 | Universität Bremen

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung