Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Moleküle morsen - Nanoforscher veröffentlichen Ergebnisse in „Nature“

22.01.2013
Forscher des Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben eine Technologie entwickelt, Bewegungen einzelner Atome und Moleküle in Echtzeit nachzuverfolgen. Diese Erkenntnis veröffentlichten sie jüngst in „Nature Materials“. Wer ganz still ist, kann die Bewegung der Moleküle sogar hören.

Das Geräusch, das aus dem Kopfhörer von Johannes Schaffert kommt, klingt wie einst das Rauschen eines Fernsehers nach Sendeschluss. Tatsächlich aber können Schaffert und seine Kollegen aus der Arbeitsgruppe des Experimentalphysikers Prof. Dr. Rolf Möller hieraus konkrete Informationen über das Verhalten einzelner Moleküle ziehen.


Das Rauschen eines einzelnen Moleküls verrät etwas über seine Dynamik: mittels Rastertunnelmikroskopie entstandene Aufnahme eines Kupferphthalocyanin-Moleküls. Das Bild ist 2,3 Nanometer x 2,3 Nanometer groß.

Dafür nutzte das Team ein Rastertunnelmikroskop (RTM): Es funktioniert, indem eine winzige Nadel, deren Spitze aus nur wenigen Atomen besteht, Zeile für Zeile die Oberfläche einer Probe abtastet und dabei – je nach deren Beschaffenheit – verschieden große Tunnelströme misst. Diesen Wert nutzen Forscher, um den Abstand zwischen Nadel und Probe zu bestimmen und daraus ein Relief der Oberfläche zu erstellen.

Auf diese Weise haben die Forscher einzelne Moleküle des blauen Farbpigments Kupferphthalocyanin auf einer Kupferoberfläche analysiert. Dabei stellten sie fest, dass der Messwert an manchen Stellen des Moleküls nicht konstant blieb, sondern hin- und hersprang. Diese Sprünge kann man tatsächlich als Rauschen im Mess-Signal hörbar machen. Obwohl die Moleküle vermeintlich fest an der Oberfläche gebunden waren, musste doch irgendeine Bewegung stattfinden. „In der Wissenschaft wird oft behauptet, im Rauschen läge keine Information“, erläutert Möller. „Das ist so nicht richtig, sie ist hier nur subtiler enthalten.“ Bisher mussten die Forscher, die sich hierfür interessierten, noch manuell auswerten. Das Team um Schaffert hingegen entwickelte eine Elektronik, die parallel zur normalen Oberflächenmessung ebenfalls sämtliche Parameter des Rauschens erfasst: Schaltrate, Schaltamplitude und Taktverhältnis. „Das erfasst für uns in einem einzigen Messschritt neben der klassischen Oberflächentopographie, wie schnell der Strom springt, wie groß die Sprünge sind und wie lange der Strom auf dem jeweiligen Niveau bleibt“, berichtet Schaffert. „Die Moleküle morsen uns die Informationen zu.“

Übertragen auf die Vorgänge in der molekularen Ebene bedeutet das: Die Forscher können in Echtzeit nachvollziehen, wie sich das Molekül bewegt. Gemeinsam mit Kollegen des Centre d’Investigació en Nanociència i Nanotecnologia in Barcelona und des Institut des Sciences Moléculaires d’Orsay in Paris berechneten sie, dass sich das Molekül auf ihrer Probe bei jedem Sprung im Strom um sieben Grad um seine eigene Achse dreht.

Besonders für die noch in den Anfängen steckende Molekularelektronik sind die neue Messmethode sowie die Erkenntnisse, die sie verspricht, von ungeheurer Bedeutung: Diese Zukunftstechnologie nutzt einzelne bewegliche Atome oder Moleküle als winzige Schalter, um zum Beispiel einen elektrischen Kontakt herzustellen oder zu trennen. Da das vom Team um Schaffert entwickelte Verfahren problemlos auf andere Moleküle und Atome zu übertragen ist, lässt sich auch deren Bewegungen nun mit höchster Auflösung nachvollziehen. So haben die CENIDE-Forscher der eigentlich langsamen RTM-Technologie eine zeitaufgelöste Variante hinzugefügt, die mehrere Tausend Bewegungen pro Sekunde analysieren kann.

Auch anderen Arbeitsgruppen will Möller diese Technologie nun zugänglich machen: „Interessierte Forscher können uns einfach ansprechen. Wir geben gerne Starthilfe.“

Die Veröffentlichung in Nature Materials ist online abrufbar:
http://dx.doi.org/10.1038/nmat3527

Redaktion und weitere Informationen:
Birte Vierjahn, CENIDE, Tel. 0203 379-8176, birte.vierjahn@uni-due.de

Ulrike Bohnsack | idw
Weitere Informationen:
http://www.uni-due.de
http://dx.doi.org/10.1038/nmat3527

Weitere Berichte zu: Atom CeNIDE Echtzeit Molekül Nadel Nanoforscher Probe Rauschen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften