Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moleküle in der Mikrofalle

26.06.2009
Max-Planck-Forscher fangen Moleküle auf einem Mikrochip und vereinfachen damit viele Experimente

Was Sam Meek und seine Kollegen mit Molekülen auf einem Chip anstellen, erinnert an die Künste manchen Fußballers: Wie der mit einer geschickten Beinbewegung einen Pass stoppt, den Ball einen Moment still hält und ihn dann mit einem Schuss ins Tor versenkt, bremsen die Forscher des Fritz-Haber-Instituts Kohlenmonoxid-Moleküle mit elektrischen Feldern, um sie dann wieder zu beschleunigen und in einem Detektor nachzuweisen - und das alles auf einer Strecke von fünf Zentimetern.

Obendrein sind die Moleküle aber rund zehn mal schneller als ein stramm geschossener Ball. Mit dem Kunststück erleichtern die Max-Planck-Forscher Experimente mit Molekülen in der Gasphase. Dafür waren bislang sehr große und aufwändige Geräte nötig. (Science, 26. Juni 2009)

Chemie geht nicht ohne Stoßen: Moleküle prallen zusammen, bleiben aneinander hängen, fliegen wieder auseinander oder zerfallen sogar. Daher lernen Forscher auch viel über die Vorgänge in chemischen Reaktoren oder in der Atmosphäre, wenn sie in der Gasphase Stöße von Molekülen und die Lebensdauer von Zuständen studieren. "Solche Untersuchungen werden jetzt deutlich einfacher", sagt Gerard Meijer, in dessen Abteilung am Fritz-Haber-Institut der Max-Planck-Gesellschaft Forscher jetzt Moleküle auf einem Chip eingefangen haben.

Nach den Plänen der Forscher hat die Berliner Firma micro resist technology mehr als 1200 Goldelektroden mit weniger als einer halben Haaresbreite Abstand auf einer Glasplatte platziert. Die Elektroden sind jeweils vier Millimeter lang und nur ein Zehntel so dick wie ein Haar. Den Chip positionieren die Forscher in einer Vakuum-Apparatur und legen an die Elektroden sechs verschiedene Wechselspannungen an. So erzeugen sie im Abstand von einem Zehntel Millimeter zylindrische Potenzialminima, die parallel zu den Elektroden laufen und wie Käscher Moleküle fangen. Die Moleküle müssen allerdings ein elektrisches Dipolmoment besitzen, also wie Kohlenmonoxid oder Wasser aus unterschiedlichen chemischen Elementen bestehen.

"Über die Frequenzen der Wechselspannung an den Elektroden steuern wir, wie schnell sich die Potenzialminima über den Chip bewegen", erklärt Sam Meek. Zu Beginn rasen die Fallen mit 325 Metern pro Sekunde, also Überschallgeschwindigkeit, über den Chip. Denn mit dieser Geschwindigkeit treffen die schnellsten Kohlenmonoxidmoleküle auf den Chip, die die Forscher in einem Molekularstrahl in die Mikrofalle treiben. Rund zehn Moleküle landen dann in einer Potenzialfalle, die mit dem Strahl über den Chip saust.

Nun regeln die Wissenschaftler die Frequenz der Wechselspannungen runter und bremsen so die Fallen samt gefangenen Molekülen ab. Dabei nehmen die Fallen aus dem Molekularstrahl nach und nach langsamere Moleküle auf. In dem Strahl fliegen die Moleküle nämlich im Schnitt mit 300 Metern pro Sekunde, die langsamsten aber nur 275 Metern pro Sekunde. Haben die Forscher auf diese Weise mehrere Dutzend Fallen beladen, bringen sie die Moleküle ganz nach Wunsch zum Stillstand oder auf eine beliebige Geschwindigkeit.

"Dabei fokussieren wir die Geschwindigkeit der Moleküle", sagt Sam Meek: Am Ende des Bremsweges variiert ihre Geschwindigkeit nur noch um wenige Meter pro Sekunde. Nun beschleunigen die Forscher die Moleküle wieder und schleudern sie vom Chip auf einen Detektor. "Dabei wählen wir die Geometrie und die Beschleunigung so, dass sich ihre Geschwindigkeit beim Verlassen des Chips wieder auffächert", erklärt Meek: "Auf diese Weise fokussieren wir die Moleküle räumlich, so dass sie alle gleichzeitig auf den Detektor treffen."

Atome lassen sich bereits seit einigen Jahren in magnetischen Fallen auf Chips gefangen. Allerdings können Physiker Atome sehr gut mit Laserstrahlen bremsen, bevor sie die Teilchen auf einem Chip manövrieren. Dabei erfährt das Atom jedes Mal, wenn es ein Laserphoton aufnimmt, einen kleinen Stoß. Geschickt eingesetzt lässt es sich mit diesen kleinen Schubsern stoppen. Das funktioniert aber nur, weil ein Atom auf alle Laser-Photonen in gleicher Weise reagiert. Moleküle tun das nicht - wenn sie ein Photon absorbieren, machen sie alles Mögliche, gebremst werden sie jedenfalls nicht. Daher müssen die Berliner Forscher sie auf dem Chip zur Ruhe bringen.

"Da wir jetzt auch Moleküle auf Chips fangen können, ermöglichen wir viele neue physikalische Experimente", sagt Gerard Meijer. So wird es künftig viel leichter die Lebensdauer von Zuständen zu bestimmen. Der Zustand eines Moleküls hängt von der Energie seiner Elektronen ab, aber auch davon, wie stark es schwingt oder rotiert. Da die Mikrofalle nur bei bestimmten Zuständen der Moleküle verfängt, brauchen die Forscher nun nur zu messen, wie lange sie das fragliche Molekül auf dem Chip fangen und anschließend noch nachweisen können.

Die Forscher möchten in der Mikrofalle auch Stöße verschiedener Moleküle untersuchen. Zu diesem Zweck müssten sie Gemische von Molekülen in die Falle jagen. "Wir hoffen, dass wir dabei Quanteneffekte beobachten können, die bislang experimentell kaum nachweisbar waren." Auf diese Weise ließen sich auch Fortschritte auf dem Weg zu einem Quantencomputer erzielen. Auf einem Chip gespeicherte polare Moleküle könnten nämlich als Quantenbits dienen und Rechnungen ausführen, indem sie miteinander wechselwirken. "Davon sind wir natürlich noch weit entfernt", sagt Gerard Meijer: "Wir sind aber zuversichtlich, dass wir mit der Molekülfalle ein ganz neues Forschungsfeld eröffnen."

Originalveröffentlichung:

Samuel A. Meek, Horst Conrad, Gerard Meijer
Trapping Molecules on a Chip
Science, 26. Juni 2009
Weitere Informationen erhalten Sie von:
Prof. Gerard Meijer, Abt. Molekülphysik
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
Tel.: +49 30 8413-5602
E-Mail: meijer@fhi-berlin.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von Hefe für Demenzerkrankungen lernen
22.02.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Rettender Ritter in goldener Rüstung
22.02.2018 | Exzellenzcluster Entzündungsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics