Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moleküle in der Mikrofalle

26.06.2009
Max-Planck-Forscher fangen Moleküle auf einem Mikrochip und vereinfachen damit viele Experimente

Was Sam Meek und seine Kollegen mit Molekülen auf einem Chip anstellen, erinnert an die Künste manchen Fußballers: Wie der mit einer geschickten Beinbewegung einen Pass stoppt, den Ball einen Moment still hält und ihn dann mit einem Schuss ins Tor versenkt, bremsen die Forscher des Fritz-Haber-Instituts Kohlenmonoxid-Moleküle mit elektrischen Feldern, um sie dann wieder zu beschleunigen und in einem Detektor nachzuweisen - und das alles auf einer Strecke von fünf Zentimetern.

Obendrein sind die Moleküle aber rund zehn mal schneller als ein stramm geschossener Ball. Mit dem Kunststück erleichtern die Max-Planck-Forscher Experimente mit Molekülen in der Gasphase. Dafür waren bislang sehr große und aufwändige Geräte nötig. (Science, 26. Juni 2009)

Chemie geht nicht ohne Stoßen: Moleküle prallen zusammen, bleiben aneinander hängen, fliegen wieder auseinander oder zerfallen sogar. Daher lernen Forscher auch viel über die Vorgänge in chemischen Reaktoren oder in der Atmosphäre, wenn sie in der Gasphase Stöße von Molekülen und die Lebensdauer von Zuständen studieren. "Solche Untersuchungen werden jetzt deutlich einfacher", sagt Gerard Meijer, in dessen Abteilung am Fritz-Haber-Institut der Max-Planck-Gesellschaft Forscher jetzt Moleküle auf einem Chip eingefangen haben.

Nach den Plänen der Forscher hat die Berliner Firma micro resist technology mehr als 1200 Goldelektroden mit weniger als einer halben Haaresbreite Abstand auf einer Glasplatte platziert. Die Elektroden sind jeweils vier Millimeter lang und nur ein Zehntel so dick wie ein Haar. Den Chip positionieren die Forscher in einer Vakuum-Apparatur und legen an die Elektroden sechs verschiedene Wechselspannungen an. So erzeugen sie im Abstand von einem Zehntel Millimeter zylindrische Potenzialminima, die parallel zu den Elektroden laufen und wie Käscher Moleküle fangen. Die Moleküle müssen allerdings ein elektrisches Dipolmoment besitzen, also wie Kohlenmonoxid oder Wasser aus unterschiedlichen chemischen Elementen bestehen.

"Über die Frequenzen der Wechselspannung an den Elektroden steuern wir, wie schnell sich die Potenzialminima über den Chip bewegen", erklärt Sam Meek. Zu Beginn rasen die Fallen mit 325 Metern pro Sekunde, also Überschallgeschwindigkeit, über den Chip. Denn mit dieser Geschwindigkeit treffen die schnellsten Kohlenmonoxidmoleküle auf den Chip, die die Forscher in einem Molekularstrahl in die Mikrofalle treiben. Rund zehn Moleküle landen dann in einer Potenzialfalle, die mit dem Strahl über den Chip saust.

Nun regeln die Wissenschaftler die Frequenz der Wechselspannungen runter und bremsen so die Fallen samt gefangenen Molekülen ab. Dabei nehmen die Fallen aus dem Molekularstrahl nach und nach langsamere Moleküle auf. In dem Strahl fliegen die Moleküle nämlich im Schnitt mit 300 Metern pro Sekunde, die langsamsten aber nur 275 Metern pro Sekunde. Haben die Forscher auf diese Weise mehrere Dutzend Fallen beladen, bringen sie die Moleküle ganz nach Wunsch zum Stillstand oder auf eine beliebige Geschwindigkeit.

"Dabei fokussieren wir die Geschwindigkeit der Moleküle", sagt Sam Meek: Am Ende des Bremsweges variiert ihre Geschwindigkeit nur noch um wenige Meter pro Sekunde. Nun beschleunigen die Forscher die Moleküle wieder und schleudern sie vom Chip auf einen Detektor. "Dabei wählen wir die Geometrie und die Beschleunigung so, dass sich ihre Geschwindigkeit beim Verlassen des Chips wieder auffächert", erklärt Meek: "Auf diese Weise fokussieren wir die Moleküle räumlich, so dass sie alle gleichzeitig auf den Detektor treffen."

Atome lassen sich bereits seit einigen Jahren in magnetischen Fallen auf Chips gefangen. Allerdings können Physiker Atome sehr gut mit Laserstrahlen bremsen, bevor sie die Teilchen auf einem Chip manövrieren. Dabei erfährt das Atom jedes Mal, wenn es ein Laserphoton aufnimmt, einen kleinen Stoß. Geschickt eingesetzt lässt es sich mit diesen kleinen Schubsern stoppen. Das funktioniert aber nur, weil ein Atom auf alle Laser-Photonen in gleicher Weise reagiert. Moleküle tun das nicht - wenn sie ein Photon absorbieren, machen sie alles Mögliche, gebremst werden sie jedenfalls nicht. Daher müssen die Berliner Forscher sie auf dem Chip zur Ruhe bringen.

"Da wir jetzt auch Moleküle auf Chips fangen können, ermöglichen wir viele neue physikalische Experimente", sagt Gerard Meijer. So wird es künftig viel leichter die Lebensdauer von Zuständen zu bestimmen. Der Zustand eines Moleküls hängt von der Energie seiner Elektronen ab, aber auch davon, wie stark es schwingt oder rotiert. Da die Mikrofalle nur bei bestimmten Zuständen der Moleküle verfängt, brauchen die Forscher nun nur zu messen, wie lange sie das fragliche Molekül auf dem Chip fangen und anschließend noch nachweisen können.

Die Forscher möchten in der Mikrofalle auch Stöße verschiedener Moleküle untersuchen. Zu diesem Zweck müssten sie Gemische von Molekülen in die Falle jagen. "Wir hoffen, dass wir dabei Quanteneffekte beobachten können, die bislang experimentell kaum nachweisbar waren." Auf diese Weise ließen sich auch Fortschritte auf dem Weg zu einem Quantencomputer erzielen. Auf einem Chip gespeicherte polare Moleküle könnten nämlich als Quantenbits dienen und Rechnungen ausführen, indem sie miteinander wechselwirken. "Davon sind wir natürlich noch weit entfernt", sagt Gerard Meijer: "Wir sind aber zuversichtlich, dass wir mit der Molekülfalle ein ganz neues Forschungsfeld eröffnen."

Originalveröffentlichung:

Samuel A. Meek, Horst Conrad, Gerard Meijer
Trapping Molecules on a Chip
Science, 26. Juni 2009
Weitere Informationen erhalten Sie von:
Prof. Gerard Meijer, Abt. Molekülphysik
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
Tel.: +49 30 8413-5602
E-Mail: meijer@fhi-berlin.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Wirkmechanismus von Tumortherapeutikum entdeckt
19.04.2018 | Universität Wien

nachricht Krebsmedikament bei der Arbeit beobachtet
19.04.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Im Focus: Basler Forschern gelingt die Züchtung von Knorpel aus Stammzellen

Aus Stammzellen aus dem Knochenmark von Erwachsenen lassen sich stabile Gelenkknorpel herstellen. Diese Zellen können so gesteuert werden, dass sie molekulare Prozesse der embryonalen Entwicklung des Knorpelgewebes durchlaufen, wie Forschende des Departements Biomedizin von Universität und Universitätsspital Basel im Fachmagazin PNAS berichten.

Bestimmte mesenchymale Stamm-/Stromazellen aus dem Knochenmark von Erwachsenen gelten als äusserst viel versprechend für die Regeneration von Skelettgewebe....

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

Stralsunder IT-Sicherheitskonferenz im Mai zum 7. Mal an der Hochschule Stralsund

12.04.2018 | Veranstaltungen

Materialien erlebbar machen - MatX 2018 - Internationale Konferenz für Materialinnovationen

12.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Laser erzeugt Magnet – und radiert ihn wieder aus

18.04.2018 | Physik Astronomie

Neue Technik macht Mikro-3D-Drucker präziser

18.04.2018 | Physik Astronomie

Intelligente Bauteile für das Stromnetz der Zukunft

18.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics