Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn sich Moleküle konzentrieren müssen: Optische Fallen sammeln selbst Nanopartikel in Flüssigkeiten

30.10.2009
Moleküle in Flüssigkeiten sind ständig in Bewegung. Das wird zum Problem, wenn sie an einer Stelle konzentriert werden sollen, um etwa bestimmte Reaktionen auszulösen oder um zu untersuchen, ob sie eine Bindung eingegangen sind.

Bisher wurden in solchen Fällen Polymere und andere Strukturen als sogenannte "molekulare Anker" verwendet, an denen die untersuchten Moleküle anlagern können. Allerdings beeinflusst diese Methode die Moleküle und verfälscht unter Umständen die Versuchsergebnisse.

Die LMU-Biophysiker Professor Dieter Braun und Franz Weinert haben nun eine "nichtinvasive" optische Molekülfalle entwickelt. "Mit unserem optischen Förderband können wir sehr schnell hohe Konzentrationsunterschiede aufbauen und auch wenige Nanometer kleine Moleküle transportieren" sagt Braun. "Das gibt uns unter anderem die Möglichkeit, biologische und andere Moleküle zu charakterisieren." (Nanoletters online, Oktober 2009)

Bei ihrem optischen Förderband nutzten Braun und Weigert thermische Effekte für den Transport von Molekülen. Zum einen sorgt die sogenannte Thermophorese dafür, dass Moleküle von warm nach kalt wandern. Der Grund dafür ist die Brown'sche Bewegung, eine ungerichtete Bewegung, die jedes Molekül ausführt, und zwar umso schneller, je wärmer es ist. Die schnelleren Moleküle in der warmen Region stoßen öfter zusammen und erfahren so einen Impuls hin zur kalten Seite. Zusätzlich aber nutzen die Wissenschaftler den Effekt der thermoviskose Pumpe: Erwärmt man Flüssigkeit an einer Stelle, verkleinert sich dort ihre Viskosität und die Moleküle ziehen sich weniger stark an. Deshalb zieht es sie von der Warmzone hin zur kälteren Region.

In der optischen Molekülfalle erzeugt ein fokussierter, infraroter Laserstrahl warme Punkte am Boden des Molekülbehälters. Es entsteht ein Temperaturgradient zwischen Oberfläche und Boden, an dem entlang die Moleküle nach oben wandern. Bewegt sich der Laserpunkt zusätzlich hin zur Behältermitte, transportiert die thermoviskose Pumpe die Flüssigkeit am Boden entlang zum Behälterrand. Das Resultat ist ein optisch betriebenes Förderband, das am Behälterboden nach außen, an der Oberfläche zur Mitte hin läuft. Die an der Oberfläche sitzenden Moleküle werden zur Mitte transportiert und sammeln sich dort. Die Methode hat den Vorteil, dass sich die Moleküle ohne äussere Einflüße in ihrem "natürlichen Umfeld", der Flüssigkeit, konzentrieren.

Sogar sehr kleine Moleküle lassen sich auf diese Weise transportieren. Die Forscher konnten zum Beispiel DNA, das Erbmolekül, mit einer Länge von nur fünf Bausteinen innerhalb von drei Sekunden in über hundertfacher Konzentration akkumulieren. Zudem wirkt das Förderband selektiv, es lassen sich auch gezielt bestimmte Molekülbindungen aussortieren. In der Ausgründung NanoTemper GmbH nutzen die Doktoranden Stefan Duhr und Philipp Baaske bereits optisch-thermische Methoden, um die Bindung von Pharmazeutika an Biomoleküle, beispielsweise Proteine, nachzuweisen. Die optische Falle bietet ihnen nun zusätzliche Techniken, die Eigenschaften der Biomoleküle zu charakterisieren. (CR/suwe)

Publikation:
An Optical Conveyor for Molekules"
Franz M. Weinert and Dieter Braun,
Nanoletters online, Oktober 2009
Ansprechpartner:
Professor Dieter Braun
Systems Biophysics, Functional Nanosystems in der Fakultät für Physik der LMU
Tel.: 089 / 2180 - 2317
E-Mail: dieter.braun@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.biosystems.physik.lmu.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie