Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn sich Moleküle konzentrieren müssen: Optische Fallen sammeln selbst Nanopartikel in Flüssigkeiten

30.10.2009
Moleküle in Flüssigkeiten sind ständig in Bewegung. Das wird zum Problem, wenn sie an einer Stelle konzentriert werden sollen, um etwa bestimmte Reaktionen auszulösen oder um zu untersuchen, ob sie eine Bindung eingegangen sind.

Bisher wurden in solchen Fällen Polymere und andere Strukturen als sogenannte "molekulare Anker" verwendet, an denen die untersuchten Moleküle anlagern können. Allerdings beeinflusst diese Methode die Moleküle und verfälscht unter Umständen die Versuchsergebnisse.

Die LMU-Biophysiker Professor Dieter Braun und Franz Weinert haben nun eine "nichtinvasive" optische Molekülfalle entwickelt. "Mit unserem optischen Förderband können wir sehr schnell hohe Konzentrationsunterschiede aufbauen und auch wenige Nanometer kleine Moleküle transportieren" sagt Braun. "Das gibt uns unter anderem die Möglichkeit, biologische und andere Moleküle zu charakterisieren." (Nanoletters online, Oktober 2009)

Bei ihrem optischen Förderband nutzten Braun und Weigert thermische Effekte für den Transport von Molekülen. Zum einen sorgt die sogenannte Thermophorese dafür, dass Moleküle von warm nach kalt wandern. Der Grund dafür ist die Brown'sche Bewegung, eine ungerichtete Bewegung, die jedes Molekül ausführt, und zwar umso schneller, je wärmer es ist. Die schnelleren Moleküle in der warmen Region stoßen öfter zusammen und erfahren so einen Impuls hin zur kalten Seite. Zusätzlich aber nutzen die Wissenschaftler den Effekt der thermoviskose Pumpe: Erwärmt man Flüssigkeit an einer Stelle, verkleinert sich dort ihre Viskosität und die Moleküle ziehen sich weniger stark an. Deshalb zieht es sie von der Warmzone hin zur kälteren Region.

In der optischen Molekülfalle erzeugt ein fokussierter, infraroter Laserstrahl warme Punkte am Boden des Molekülbehälters. Es entsteht ein Temperaturgradient zwischen Oberfläche und Boden, an dem entlang die Moleküle nach oben wandern. Bewegt sich der Laserpunkt zusätzlich hin zur Behältermitte, transportiert die thermoviskose Pumpe die Flüssigkeit am Boden entlang zum Behälterrand. Das Resultat ist ein optisch betriebenes Förderband, das am Behälterboden nach außen, an der Oberfläche zur Mitte hin läuft. Die an der Oberfläche sitzenden Moleküle werden zur Mitte transportiert und sammeln sich dort. Die Methode hat den Vorteil, dass sich die Moleküle ohne äussere Einflüße in ihrem "natürlichen Umfeld", der Flüssigkeit, konzentrieren.

Sogar sehr kleine Moleküle lassen sich auf diese Weise transportieren. Die Forscher konnten zum Beispiel DNA, das Erbmolekül, mit einer Länge von nur fünf Bausteinen innerhalb von drei Sekunden in über hundertfacher Konzentration akkumulieren. Zudem wirkt das Förderband selektiv, es lassen sich auch gezielt bestimmte Molekülbindungen aussortieren. In der Ausgründung NanoTemper GmbH nutzen die Doktoranden Stefan Duhr und Philipp Baaske bereits optisch-thermische Methoden, um die Bindung von Pharmazeutika an Biomoleküle, beispielsweise Proteine, nachzuweisen. Die optische Falle bietet ihnen nun zusätzliche Techniken, die Eigenschaften der Biomoleküle zu charakterisieren. (CR/suwe)

Publikation:
An Optical Conveyor for Molekules"
Franz M. Weinert and Dieter Braun,
Nanoletters online, Oktober 2009
Ansprechpartner:
Professor Dieter Braun
Systems Biophysics, Functional Nanosystems in der Fakultät für Physik der LMU
Tel.: 089 / 2180 - 2317
E-Mail: dieter.braun@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.biosystems.physik.lmu.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

nachricht Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?
16.01.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie

Erste "Rote Liste" gefährdeter Lebensräume in Europa

16.01.2017 | Ökologie Umwelt- Naturschutz