Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moleküle in ihrer ursprünglichsten Form messen

03.07.2013
Neues Gerätezentrum an der Universität Bielefeld

Mit einer speziellen Elektronenstrahlapparatur können Chemiker der Universität Bielefeld herausfinden, wie gasförmige Moleküle präzise dreidimensional aufgebaut sind.

Dafür analysiert das Forschungsteam um Professor Dr. Norbert Mitzel die Moleküle in ihrem Gaszustand. Die Universität Bielefeld hat als einzige Einrichtung in der Europäischen Union eine Anlage, die für solche Gasphasenanalysen geeignet ist.

Bald können auch externe Forschungseinrichtungen das Gerät für die Analyse ihrer Substanzen nutzen. Die Deutsche Forschungsgemeinschaft (DFG) finanziert das neue Gerätezentrum über drei Jahre mit 550.000 Euro. Es wird heute, 3. Juli, im Beisein internationaler Gäste eröffnet.

Gas-Elektronendiffraktometer heißt die Untersuchungsanlage der Fakultät für Chemie. „Weltweit gibt es solche Geräte nur an fünf weiteren Standorten – in Japan, Neuseeland, den USA und zwei Mal in Russland“, sagt Professor Mitzel, der die Arbeitsgruppe Anorganische Chemie und Strukturchemie leitet. Das Ungewöhnliche: Der Bielefelder Apparat ist zwar mehr als vier Jahrzehnte alt, ist aber in jüngster Zeit substanziell modernisiert worden: alte Hülle, neuer Kern. Trotz seines Alters ist er sehr gefragt, weil er Stoffe im Gaszustand messen kann. Diese Funktion steht den meisten Chemikern mit ihren Messgeräten nicht zur Verfügung.
Vorwiegend werden mit dem Gerät vergleichsweise kleine Moleküle untersucht. Zusätzlich verfügt die Bielefelder Arbeitsgruppe über das Knowhow, aus Flüssigkeiten bei tiefen Temperaturen Kristalle zu züchten. So lässt sich mit dem Diffraktometer die Struktur der Moleküle auch im Kristall messen.

Doch wozu braucht es ein Messgerät für gasförmige Verbindungen? „Als Chemiker interessieren wir uns dafür, wie Atome miteinander verbunden sind“, sagt Mitzel. „Wenn man genau ermitteln will, wie sich ein Molekül aufbaut, untersucht man es am besten im Gaszustand – dann befindet es sich in seiner ursprünglichsten Form, weil sich die Moleküle gegenseitig nicht beeinflussen. Im Festzustand ist das anders, denn in Kristallen etwa verformen sich die Moleküle gegenseitig.“

Mit ihren Messungen klären Professor Mitzel und sein Team mitunter jahrzehntealte Forschungsfragen. Externe Forscher haben von dem Bielefelder Elektronendiffraktometer bislang schon in vielen Fällen profitiert – wenn sie gemeinsam mit dem Team von Mitzel geforscht haben. So konnte die Arbeitsgruppe um Mitzel 2011 erstmals präzise zeigen, in welchen Abständen und Winkeln Phosphor-Atome im elementaren Phosphor angeordnet sind. Im gleichen Jahr ermittelten die Forscher zudem die Anordnung von Phosphor-Atomen in einer ganz neuen einfachen Verbindung mit Arsen, dem P3As-Molekül, entwickelt von Professor Christopher Cummins PhD vom Massachusetts Institute of Technology (MIT) in Boston. Mit der Arbeitsgruppe von Professor Dr. Carlos Della Védova von der Universidad Nacional de La Plata in Argentinien forschen die Bielefelder Chemiker seit drei Jahren in einem gemeinsamen Projekt und untersuchen unter anderem Modelle für die Übertragung von Stickoxid, das als Botenstoff im Körper wirkt. „Dabei geht es sozusagen um die Basis der Wirkungsweise von Viagra“, sagt Mitzel. Aber auch für industriell interessante Verbindungen wird das Diffraktometer genutzt.

Für Analysen mit dem Gerät wird eine verdampfte Probe per Vakuum in das Gerät gesaugt. Darin trifft ein Elektronenstrahl auf das Gas. Aus dem Bild, das die abgelenkten Elektronen erzeugen, können die Forscher berechnen, wie die Atome im Molekül angeordnet sind, sprich: welche Abstände sie zueinander haben. „Die Anlage arbeitet sehr präzise“, sagt Mitzel. Die Abstände von Atomen werden in Ångström angegeben. Ein Ångström entspricht 0,0000000001 Meter. „Wir können die Länge bis auf drei, manchmal vier Stellen hinter dem Komma eines Ångströms genau angeben“, erklärt der Chemiker.

Die DFG hat vor zwei Jahren eine Förderlinie gestartet, damit möglichst viele Forscher spezielle Analyseanlagen wie das Gerät der Arbeitsgruppe von Professor Mitzel verwenden können. Die Idee der DFG: Forschungseinrichtungen in ganz Deutschland stellen ihre hochspezialisierten Apparate externen Partnern zur Verfügung. Sie gründen dafür „Gerätezentren“, auch „Core Facilities“ genannt. Dort bedienen Experten die Maschinen für Auftraggeber von außerhalb: Sie bereiten Proben vor, messen sie und analysieren die Daten. Die DFG finanziert dieses Personal drei Jahre lang. In Zukunft sollen die Gerätezentren sich ihre Auftragsarbeiten teilweise bezahlen lassen – was im Wissenschaftssystem derzeit noch unüblich ist. Nach Ende der DFG-Förderung – so das Konzept – sollen sie sich selbst finanzieren. Das neue Gerätezentrum der Universität Bielefeld heißt „GED@BI“ (Gas Electron Diffraction and Small Molecule Structures Centre Bielefeld – Zentrum für Gas-Elektronenbeugung und Strukturchemie kleiner Moleküle).

Kontakt:
Prof. Dr. Norbert W. Mitzel, Universität Bielefeld
Fakultät für Chemie/ Anorganische Chemie und Strukturchemie
Telefon: 0521 106-6182
E-Mail: norbert.mitzel@uni-bielefeld.de

Ingo Lohuis | idw
Weitere Informationen:
http://www.uni-bielefeld.de/chemie/arbeitsbereiche/ac3-mitzel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demenz: Neue Substanz verbessert Gehirnfunktion
28.07.2017 | Technische Universität München

nachricht Mit einem Flow-Reaktor umweltschonend Wirkstoffe erzeugen
28.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise