Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moleküle in ihrer ursprünglichsten Form messen

03.07.2013
Neues Gerätezentrum an der Universität Bielefeld

Mit einer speziellen Elektronenstrahlapparatur können Chemiker der Universität Bielefeld herausfinden, wie gasförmige Moleküle präzise dreidimensional aufgebaut sind.

Dafür analysiert das Forschungsteam um Professor Dr. Norbert Mitzel die Moleküle in ihrem Gaszustand. Die Universität Bielefeld hat als einzige Einrichtung in der Europäischen Union eine Anlage, die für solche Gasphasenanalysen geeignet ist.

Bald können auch externe Forschungseinrichtungen das Gerät für die Analyse ihrer Substanzen nutzen. Die Deutsche Forschungsgemeinschaft (DFG) finanziert das neue Gerätezentrum über drei Jahre mit 550.000 Euro. Es wird heute, 3. Juli, im Beisein internationaler Gäste eröffnet.

Gas-Elektronendiffraktometer heißt die Untersuchungsanlage der Fakultät für Chemie. „Weltweit gibt es solche Geräte nur an fünf weiteren Standorten – in Japan, Neuseeland, den USA und zwei Mal in Russland“, sagt Professor Mitzel, der die Arbeitsgruppe Anorganische Chemie und Strukturchemie leitet. Das Ungewöhnliche: Der Bielefelder Apparat ist zwar mehr als vier Jahrzehnte alt, ist aber in jüngster Zeit substanziell modernisiert worden: alte Hülle, neuer Kern. Trotz seines Alters ist er sehr gefragt, weil er Stoffe im Gaszustand messen kann. Diese Funktion steht den meisten Chemikern mit ihren Messgeräten nicht zur Verfügung.
Vorwiegend werden mit dem Gerät vergleichsweise kleine Moleküle untersucht. Zusätzlich verfügt die Bielefelder Arbeitsgruppe über das Knowhow, aus Flüssigkeiten bei tiefen Temperaturen Kristalle zu züchten. So lässt sich mit dem Diffraktometer die Struktur der Moleküle auch im Kristall messen.

Doch wozu braucht es ein Messgerät für gasförmige Verbindungen? „Als Chemiker interessieren wir uns dafür, wie Atome miteinander verbunden sind“, sagt Mitzel. „Wenn man genau ermitteln will, wie sich ein Molekül aufbaut, untersucht man es am besten im Gaszustand – dann befindet es sich in seiner ursprünglichsten Form, weil sich die Moleküle gegenseitig nicht beeinflussen. Im Festzustand ist das anders, denn in Kristallen etwa verformen sich die Moleküle gegenseitig.“

Mit ihren Messungen klären Professor Mitzel und sein Team mitunter jahrzehntealte Forschungsfragen. Externe Forscher haben von dem Bielefelder Elektronendiffraktometer bislang schon in vielen Fällen profitiert – wenn sie gemeinsam mit dem Team von Mitzel geforscht haben. So konnte die Arbeitsgruppe um Mitzel 2011 erstmals präzise zeigen, in welchen Abständen und Winkeln Phosphor-Atome im elementaren Phosphor angeordnet sind. Im gleichen Jahr ermittelten die Forscher zudem die Anordnung von Phosphor-Atomen in einer ganz neuen einfachen Verbindung mit Arsen, dem P3As-Molekül, entwickelt von Professor Christopher Cummins PhD vom Massachusetts Institute of Technology (MIT) in Boston. Mit der Arbeitsgruppe von Professor Dr. Carlos Della Védova von der Universidad Nacional de La Plata in Argentinien forschen die Bielefelder Chemiker seit drei Jahren in einem gemeinsamen Projekt und untersuchen unter anderem Modelle für die Übertragung von Stickoxid, das als Botenstoff im Körper wirkt. „Dabei geht es sozusagen um die Basis der Wirkungsweise von Viagra“, sagt Mitzel. Aber auch für industriell interessante Verbindungen wird das Diffraktometer genutzt.

Für Analysen mit dem Gerät wird eine verdampfte Probe per Vakuum in das Gerät gesaugt. Darin trifft ein Elektronenstrahl auf das Gas. Aus dem Bild, das die abgelenkten Elektronen erzeugen, können die Forscher berechnen, wie die Atome im Molekül angeordnet sind, sprich: welche Abstände sie zueinander haben. „Die Anlage arbeitet sehr präzise“, sagt Mitzel. Die Abstände von Atomen werden in Ångström angegeben. Ein Ångström entspricht 0,0000000001 Meter. „Wir können die Länge bis auf drei, manchmal vier Stellen hinter dem Komma eines Ångströms genau angeben“, erklärt der Chemiker.

Die DFG hat vor zwei Jahren eine Förderlinie gestartet, damit möglichst viele Forscher spezielle Analyseanlagen wie das Gerät der Arbeitsgruppe von Professor Mitzel verwenden können. Die Idee der DFG: Forschungseinrichtungen in ganz Deutschland stellen ihre hochspezialisierten Apparate externen Partnern zur Verfügung. Sie gründen dafür „Gerätezentren“, auch „Core Facilities“ genannt. Dort bedienen Experten die Maschinen für Auftraggeber von außerhalb: Sie bereiten Proben vor, messen sie und analysieren die Daten. Die DFG finanziert dieses Personal drei Jahre lang. In Zukunft sollen die Gerätezentren sich ihre Auftragsarbeiten teilweise bezahlen lassen – was im Wissenschaftssystem derzeit noch unüblich ist. Nach Ende der DFG-Förderung – so das Konzept – sollen sie sich selbst finanzieren. Das neue Gerätezentrum der Universität Bielefeld heißt „GED@BI“ (Gas Electron Diffraction and Small Molecule Structures Centre Bielefeld – Zentrum für Gas-Elektronenbeugung und Strukturchemie kleiner Moleküle).

Kontakt:
Prof. Dr. Norbert W. Mitzel, Universität Bielefeld
Fakultät für Chemie/ Anorganische Chemie und Strukturchemie
Telefon: 0521 106-6182
E-Mail: norbert.mitzel@uni-bielefeld.de

Ingo Lohuis | idw
Weitere Informationen:
http://www.uni-bielefeld.de/chemie/arbeitsbereiche/ac3-mitzel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten