Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moleküle in Bewegung

26.02.2013
Viele Funktionen von Biomolekülen können erst verstanden werden, wenn die Dynamik ihrer Bewegungen unter zellähnlichen Bedingungen bekannt ist.

Forscher aus Innsbruck und New York setzen ein hochmodernes Verfahren ein, mit dem sie das dynamische Verhalten einzelner Biomoleküle sehr genau ermitteln können. Es liefert wichtige Einsichten in die Funktionsweise von Genschaltern.


Riboschalter regulieren die Biosynthese und den Transport des Metaboliten Thiaminpyrophosphat (TPP). Grafik: Uni Innsbruck

Die DNA hat eine kleine Schwester, die Boten-RNA. Diese transportiert die Erbgut-Information in die Proteinfabriken der Zelle. Im Jahr 2000 entdeckten Wissenschaftler um Ronald R. Breaker, dass die Boten-RNA Kontrollelemente enthalten kann, mit denen diese Moleküle ihr eigenes Gen ein- oder ausschalten können. Bakterien dient dies zum Beispiel dazu, viele Stoffwechselvorgänge zu regulieren. So passen sie ihre Produktionsmaschinerie dem aktuellen Bedarf in einer Zelle an. Diese sogenannten Riboschalter haben auch das Interesse der Arbeitsgruppe um Prof. Ronald Micura am Institut für Organische Chemie und dem Centrum für Molekulare Biowissenschaften der Universität Innsbruck (CMBI) geweckt. Gemeinsam mit Wissenschaftlern des Weill Cornell Medical College in New York nutzen sie eine neue Technik, den Single-Molecule Fluorescence Resonance Energy Transfer (smFRET), um die Dynamik einzelner Riboschalter-Moleküle zu untersuchen. „Die biologische Aktivität eines Molekül erschließt sich selten nur aus der chemischen Struktur“, sagt Ronald Micura. „Entscheidend ist meist, wie sich diese Struktur im Laufe der Zeit ändert, also die Beweglichkeit des Moleküls.“

Know-how aus Tirol

Die Chemiker um Ronald Micura sind weltweit führend bei der synthetischen Herstellung und Modifizierung von Biomolekülen. Mit üblichen Syntheseverfahren ist es nämlich kaum möglich, mehr als 50 Basenbausteine gezielt zusammenzusetzen. Micura und seine Mitarbeiter haben ein raffiniertes Verfahren entwickelt, mit dem sie chemisch synthetisierte RNA-Teile nach Belieben kombinieren können. Sie greifen dabei auf einen Trick der Natur zurück: Bestimmte Enzyme können RNA-Strangbrüche reparieren, indem sie die Teile durch chemische Bindungen wieder aneinanderfügen. Bietet man diesen Enzymen die künstlich hergestellte RNA an, knüpfen sie auch daraus lange Ketten. So bilden die Chemiker natürliche Riboschalter nach und markieren diese an den entscheidenden Stellen mit Farbstoffen. Im Labor der New Yorker Forscher werden diese oft in monatelanger Feinarbeit hergestellten Riboschalter dann mit Hilfe von Laserlicht analysiert.

Auf größere biomolekulare Maschinen ausweiten

In der amerikanischen Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS) haben die Forscher nun Ergebnisse der Untersuchung eines der verbreitetsten Riboschalter-Moleküle veröffentlicht. Diese kommen in Bakterien, Pflanzen und Pilzen vor und regulieren die Biosynthese und den Transport des Metaboliten Thiaminpyrophosphat (TPP), einem Abkömmling von Vitamin B1. Mit dem neuen Verfahren können die Forscher die Bewegungen einzelner Moleküle im Millisekundentakt beobachten. „Wir waren sehr überrascht zu sehen, wie beweglich die beiden Arme des Moleküls sind, welche in der Kristallstruktur eine starre Interaktion implizieren“, erzählt Micura. „Dort liegt auch die Bindetasche des Metaboliten, der an die RNA andockt und das entsprechende Gen abschaltet.“ Möglich ist diese genaue Beobachtung nur durch die selektive Modifizierung der RNA-Moleküle in den Innsbrucker Labors. Micura und sein amerikanischer Partner haben sich das entsprechende Verfahren in der Zwischenzeit auch patentieren lassen und wollen nun in einem gemeinsamen, von der National Science Foundation NSF und dem Wissenschaftsfonds FWF geförderten Projekt ihre Techniken auch auf noch größere Biomoleküle ausweiten. „Wir wollen den gesamten Translations-Mechanismus - als jene Maschinerie, die aus Erbgutinformation Proteine erzeugt - untersuchen“, blickt Micura bereits in die Zukunft.

Publikation: Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution. Andrea Haller, Roger B. Altman, Marie F. Soulière, Scott C. Blanchard, and Ronald Micura. PNAS 2013 DOI: 10.1073/pnas.1218062110

Rückfragehinweis:
Ronald Micura
Institut für Organische Chemie
Universität Innsbruck
Tel.: +43 512 507-57710
E-Mail: Ronald.Micura@uibk.ac.at
Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geteiltes Denken ist doppeltes Denken
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie