Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit weniger Licht Hirnzellen schalten

28.03.2014

Vernetzte Nervenzellen bilden die Steuerzentrale von Organismen. Beim Fadenwurm reichen schon 300 Nervenzellen, um komplexes Verhalten hervorzurufen.

Um die Eigenschaften der Netze zu verstehen, schalten Forscher etwa mit Licht Zellen gezielt an oder aus und beobachten das resultierende Verhalten des Organismus.


Nervenzellen bilden Netzwerke, die Signale verarbeiten können. Bild: J. Wietek/HU Berlin

Im Magazin Science stellen Forscher nun ein Protein vor, das Nervenzellen noch leichter durch Licht steuerbar macht. Es könnte als Grundlage für Forschung dienen, die Ursachen von Krankheiten des Nervensystems aufklärt. DOI: 10.1126/science.1249375

Um eine Nervenzelle mit Licht zu schalten, nutzt man bestimmte Proteine, die Ionenkanäle in der Zellmembran bilden, die Kanalrhodopsine. Trifft Licht auf die Kanäle, öffnen sie sich, Ionen treten ein und die Zelle wird dann gezielt aktiv oder inaktiv.

Damit hat man ein sehr feines Werkzeug, um gezielt Funktionen im Netzwerk von Nervenzellen zu untersuchen. Bislang waren jedoch große Lichtmengen notwendig, sodass nur eng begrenzte Gebiete im Netzwerk auf einmal geschaltet werden konnten. Das nun vorgestellte Kanalrhodopsin ChloC reagiert etwa 10.000-mal empfindlicher auf Licht als bisherige Proteine mit denen Nervenzellen ausgeschaltet werden können.

„Für den Umbau des Proteins haben wir dessen Struktur am Computer analysiert“, erklärt Marcus Elstner vom KIT. Der theoretische Chemiker und sein Team haben die Proteine, die aus rund 5000 Atomen bestehen, modelliert und nutzten dazu die Hochleistungscomputer am KIT-Rechenzentrum, dem Steinbuch Center for Computing SSC.

Mitsamt der Proteinumgebung, also Zellmembran und Zellwasser, waren rund 100 000 Atome für die Berechnungen zu berücksichtigen, die mehrere Wochen Rechenzeit beanspruchten. „Es zeigt sich, dass die Ionenleitfähigkeit des Kanals entscheidend auf drei Aminosäuren in der zentralen Region aufbaut, also auf nur rund 50 Atome im Kanal.“ Durch den Austausch der Aminosäuren ist es nun gelungen, die Empfindlichkeit des Ionenkanals zu steigern.

Licht-aktivierte Ionenkanäle, die sogenannten Kanalrhodopsine (Channelrhodopsins) aus Mikroalgen werden seit dem Jahre 2005 genutzt. In neuronalen Schnitten oder in lebenden, transgenen Modellorganismen wie Fliegen, Zebrafisch oder Mäusen erlauben sie es gezielt definierte ausgewählte Zellen mit Licht zu aktivieren, um ihre Rolle im Zellverbund funktionell zu verstehen.

Diese Technologie ist heute als Optogenetik bekannt und bereits sehr weit verbreitet. Sie hat es in den letzten Jahren möglich gemacht, die Biologie der Signalverarbeitung besser zu verstehen. Dazu wurden bislang unzugängliche neuronale Bahnen kartiert und viele Zusammenhänge zwischen Proteinen, Zellen, Geweben und Arbeitsweise des Nervensystems entdeckt.

In der aktuellen Studie im Science-Magazin haben Forscher aus Karlsruhe, Hamburg und Berlin gemeinsam die Ionenkanäle weiterentwickelt. Jonas Wietek und Nona Adeishvili aus der Gruppe von Peter Hegemann an der Humboldt-Universität zu Berlin ist es gelungen, den Selektivitätsfilter der Kanalrhodopsine zu identifizieren und diesen so zu modifizieren, dass selektiv negativ geladene Chloridionen geleitet werden.

Diese Chlorid-leitenden Kanäle haben die Wissenschaftler ChloC genannt. Hiroshi Watanabe aus der Gruppe um Markus Elstner vom Karlsruher Institut für Technologie KIT hat begleitend die Ionenverteilung im Protein berechnet und die erhöhte Chloridverteilung visualisiert. Simon Wiegert aus der Gruppe um Thomas Oertner vom Zentrum für Molekulare Neurobiologie in Hamburg konnte anschließend an neuronalen Schnitten zeigen, dass ChloC in ausgewählte Neuronen eingebracht werden können, um diese mit sehr geringen Lichtintensitäten zu inaktivieren, so wie das im lebenden Organismus erfolgt.

Mit ChloC steht jetzt ein neues optogenetisches Werkzeug bereit, das in den Neurowissenschaften genutzt werden kann, um zusammen mit den bisher bekannten lichtaktivierten Kationenkanälen, die vornehmlich Natriumionen und Protonen leiten, die Verschaltung neuronaler Netzwerke zu studieren. Dieses Grundlagenwissen könnte helfen, um die Mechanismen von Krankheiten wie Epilepsie und Parkinson besser zu verstehen. Darauf könnten in einigen Jahren Konzepte für Therapien aufbauen, die zielgenauer sind als breit gestreute Medikamente.

Conversion of Channelrhodopsin into a Light-Gated Chloride Channel, J. Wietek et. al, DOI: 10.1126/science.1249375

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Thematische Schwerpunkte der Forschung sind Energie, natürliche und ge-baute Umwelt sowie Gesellschaft und Technik, von fundamentalen Fragen bis zur Anwendung. Mit rund 9000 Mitarbeiterinnen und Mitarbeitern, darunter knapp 6000 in Wissenschaft und Lehre, sowie 24 000 Studierenden ist das KIT eine der größten Forschungs- und Lehreinrichtungen Europas. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau