Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit weniger Licht Hirnzellen schalten

28.03.2014

Vernetzte Nervenzellen bilden die Steuerzentrale von Organismen. Beim Fadenwurm reichen schon 300 Nervenzellen, um komplexes Verhalten hervorzurufen.

Um die Eigenschaften der Netze zu verstehen, schalten Forscher etwa mit Licht Zellen gezielt an oder aus und beobachten das resultierende Verhalten des Organismus.


Nervenzellen bilden Netzwerke, die Signale verarbeiten können. Bild: J. Wietek/HU Berlin

Im Magazin Science stellen Forscher nun ein Protein vor, das Nervenzellen noch leichter durch Licht steuerbar macht. Es könnte als Grundlage für Forschung dienen, die Ursachen von Krankheiten des Nervensystems aufklärt. DOI: 10.1126/science.1249375

Um eine Nervenzelle mit Licht zu schalten, nutzt man bestimmte Proteine, die Ionenkanäle in der Zellmembran bilden, die Kanalrhodopsine. Trifft Licht auf die Kanäle, öffnen sie sich, Ionen treten ein und die Zelle wird dann gezielt aktiv oder inaktiv.

Damit hat man ein sehr feines Werkzeug, um gezielt Funktionen im Netzwerk von Nervenzellen zu untersuchen. Bislang waren jedoch große Lichtmengen notwendig, sodass nur eng begrenzte Gebiete im Netzwerk auf einmal geschaltet werden konnten. Das nun vorgestellte Kanalrhodopsin ChloC reagiert etwa 10.000-mal empfindlicher auf Licht als bisherige Proteine mit denen Nervenzellen ausgeschaltet werden können.

„Für den Umbau des Proteins haben wir dessen Struktur am Computer analysiert“, erklärt Marcus Elstner vom KIT. Der theoretische Chemiker und sein Team haben die Proteine, die aus rund 5000 Atomen bestehen, modelliert und nutzten dazu die Hochleistungscomputer am KIT-Rechenzentrum, dem Steinbuch Center for Computing SSC.

Mitsamt der Proteinumgebung, also Zellmembran und Zellwasser, waren rund 100 000 Atome für die Berechnungen zu berücksichtigen, die mehrere Wochen Rechenzeit beanspruchten. „Es zeigt sich, dass die Ionenleitfähigkeit des Kanals entscheidend auf drei Aminosäuren in der zentralen Region aufbaut, also auf nur rund 50 Atome im Kanal.“ Durch den Austausch der Aminosäuren ist es nun gelungen, die Empfindlichkeit des Ionenkanals zu steigern.

Licht-aktivierte Ionenkanäle, die sogenannten Kanalrhodopsine (Channelrhodopsins) aus Mikroalgen werden seit dem Jahre 2005 genutzt. In neuronalen Schnitten oder in lebenden, transgenen Modellorganismen wie Fliegen, Zebrafisch oder Mäusen erlauben sie es gezielt definierte ausgewählte Zellen mit Licht zu aktivieren, um ihre Rolle im Zellverbund funktionell zu verstehen.

Diese Technologie ist heute als Optogenetik bekannt und bereits sehr weit verbreitet. Sie hat es in den letzten Jahren möglich gemacht, die Biologie der Signalverarbeitung besser zu verstehen. Dazu wurden bislang unzugängliche neuronale Bahnen kartiert und viele Zusammenhänge zwischen Proteinen, Zellen, Geweben und Arbeitsweise des Nervensystems entdeckt.

In der aktuellen Studie im Science-Magazin haben Forscher aus Karlsruhe, Hamburg und Berlin gemeinsam die Ionenkanäle weiterentwickelt. Jonas Wietek und Nona Adeishvili aus der Gruppe von Peter Hegemann an der Humboldt-Universität zu Berlin ist es gelungen, den Selektivitätsfilter der Kanalrhodopsine zu identifizieren und diesen so zu modifizieren, dass selektiv negativ geladene Chloridionen geleitet werden.

Diese Chlorid-leitenden Kanäle haben die Wissenschaftler ChloC genannt. Hiroshi Watanabe aus der Gruppe um Markus Elstner vom Karlsruher Institut für Technologie KIT hat begleitend die Ionenverteilung im Protein berechnet und die erhöhte Chloridverteilung visualisiert. Simon Wiegert aus der Gruppe um Thomas Oertner vom Zentrum für Molekulare Neurobiologie in Hamburg konnte anschließend an neuronalen Schnitten zeigen, dass ChloC in ausgewählte Neuronen eingebracht werden können, um diese mit sehr geringen Lichtintensitäten zu inaktivieren, so wie das im lebenden Organismus erfolgt.

Mit ChloC steht jetzt ein neues optogenetisches Werkzeug bereit, das in den Neurowissenschaften genutzt werden kann, um zusammen mit den bisher bekannten lichtaktivierten Kationenkanälen, die vornehmlich Natriumionen und Protonen leiten, die Verschaltung neuronaler Netzwerke zu studieren. Dieses Grundlagenwissen könnte helfen, um die Mechanismen von Krankheiten wie Epilepsie und Parkinson besser zu verstehen. Darauf könnten in einigen Jahren Konzepte für Therapien aufbauen, die zielgenauer sind als breit gestreute Medikamente.

Conversion of Channelrhodopsin into a Light-Gated Chloride Channel, J. Wietek et. al, DOI: 10.1126/science.1249375

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Thematische Schwerpunkte der Forschung sind Energie, natürliche und ge-baute Umwelt sowie Gesellschaft und Technik, von fundamentalen Fragen bis zur Anwendung. Mit rund 9000 Mitarbeiterinnen und Mitarbeitern, darunter knapp 6000 in Wissenschaft und Lehre, sowie 24 000 Studierenden ist das KIT eine der größten Forschungs- und Lehreinrichtungen Europas. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie