Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Nano-Imitaten gegen Malariaparasiten

09.12.2014

Malariaparasiten dringen in menschliche rote Blutkörperchen ein, die sie zum Platzen bringen und so weitere infizieren. Nun haben Forschende der Universität Basel und des Schweizerischen Tropen- und Public Health-Instituts sogenannte Nano-Imitate von Wirtszellmembranen entwickelt, welche die Erreger täuschen und austricksen. Dies könnte zu neuartigen Therapie- und Impfstrategien gegen Malaria und andere Infektionskrankheiten führen, wie die Forschenden in der Fachzeitschrift «ACS Nano» berichten.

Für viele Infektionskrankheiten gibt es noch keine Impfung, die eine Infektion im Voraus verhindert; zudem verbreiten sich Resistenzen gegen aktuelle Medikamente rasant. Zur Bekämpfung solcher Infektionen werden daher innovative Strategien mit alternativen Wirkmechanismen gesucht – so etwa gegen den Malariaerreger Plasmodium falciparum, der durch die Stechmücke Anopheles übertragen wird. Malaria ist immer noch verantwortlich für mehr als 600'000 Todesfälle im Jahr, vor allem Kinder in Afrika sind betroffen (WHO, 2012).


Nach ihrer Reifung verlassen Malariaparasiten (gelb) ein infiziertes rotes Blutkörperchen und werden von den Nano-Imitaten (blau) effizient blockiert. Bild: Modified with permission from ACS

Künstliche Bläschen mit Rezeptoren
Die Malariaparasiten dringen normalerweise in menschliche rote Blutkörperchen ein, in denen sie sich verstecken und vermehren. Danach bringen sie die Wirtszellen zum Platzen und infizieren neue Zellen. Dieser Kreislauf kann nun mithilfe der Nano-Imitate effizient unterbrochen werden, da die frei gewordenen Erreger an Nano-Imitate anstatt an die roten Blutkörperchen binden.

Forschende um Prof. Wolfgang Meier, Prof. Cornelia Palivan (beide Universität Basel) und Prof. Hans-Peter Beck (Swiss TPH) haben die Nano-Imitate der Wirtszellmembran entwickelt und erfolgreich getestet. Dazu entwickelten sie einen einfachen Prozess zur Herstellung von Polymer-Vesikeln – kleinster künstlicher Bläschen –, die die spezifischen Wirtszellrezeptoren auf ihrer Oberfläche präsentieren. Die Bildung solcher Polymer-Vesikel mit eingebautem wasserlöslichem Wirtszellrezeptor erfolgte durch ein Gemisch aus zwei unterschiedlichen Block-Copolymeren. In wässriger Lösung formen sich die Nano-Imitate spontan durch Selbstorganisation.

Erreger effizient blockiert
In der Regel zerstören die Malariaparasiten ihre Wirtszellen nach 48 Stunden und infizieren neue rote Blutkörperchen, wobei sie an deren spezifischen Wirtszellrezeptoren binden müssen. Nano-Imitate können nun die heraustretenden Parasiten binden und dadurch ihre Invasion in die Wirtszellen blockieren. Die Erreger befallen so ihre Wirtszellen nicht mehr, sind jedoch für das Immunsystem voll zugänglich.

Die Forschenden untersuchten die Interaktion von Nano-Imitaten und den Malariaparasiten mittels Fluoreszenz- und Elektronenmikroskopie im Detail. Dabei konnte eine grosse Anzahl an Nano-Imitaten an die Parasiten binden, und die Reduktion der Infektion war durch die Nano-Imitate um das 100-Fache effizienter als mit löslichen Wirtszellrezeptoren. Das heisst: Um alle Erreger zu blockieren, braucht es eine 100-mal höhere Konzentration von löslichen Wirtszellrezeptoren, als wenn die Rezeptoren auf den Nano-Imitaten präsentiert werden.

«Unsere Ergebnisse könnten in Zukunft zu neuen Möglichkeiten für alternative Therapie- und Impfansätzen führen», sagt Adrian Najer, Erstautor der Studie. Da viele Krankheitserreger den gleichen Wirtszellrezeptor zum Eindringen benötigen wie die Malariaparasiten, könnten die Nano-Imitate auch gegen andere Infektionskrankheiten eingesetzt werden. Das Forschungsprojekt wurde vom Schweizerischen Nationalfonds und dem NCCR «Molecular Systems Engineering» finanziell unterstützt.

Originalbeitrag
Adrian Najer, Dalin Wu, Andrej Bieri, Françoise Brand, Cornelia G. Palivan, Hans-Peter Beck, and Wolfgang Meier
Nanomimics of Host Cell Membranes Block Invasion and Expose Invasive Malaria Parasites
ACS Nano, Publication Date (Web): November 29, 2014 | DOI: 10.1021/nn5054206

Weitere Auskünfte
Prof. Wolfgang Meier, Universität Basel, Departement Chemie, Tel. +41 61 267 38 02, E-Mail: wolfgang.meier@unibas.ch


Weitere Informationen:

http://pubs.acs.org/doi/pdf/10.1021/nn5054206  - Online-Artikel in ACS Nano

Christoph Dieffenbacher | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops

Wie weggeblasen!

08.12.2016 | Seminare Workshops

Seminare 2017 HDT Berlin

08.12.2016 | Seminare Workshops