Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Künstlicher Intelligenz das Gehirn verstehen

28.02.2017

Wie entsteht Bewusstsein? Die Antwort auf diese Frage, so vermuten Forscher, steckt in den Verbindungen zwischen den Nervenzellen. Leider ist jedoch kaum etwas über den Schaltplan des Gehirns bekannt.

Dies liegt nicht zuletzt an einem Zeitproblem: Das Aufspüren von Verbindungen in gewonnenen Daten würde viele Menschenleben an Arbeitsstunden benötigen, da bisher kein Computer die Zellkontakte zuverlässig genug identifizieren konnte.


Mit Hilfe künstlicher neuronaler Netze wollen Neurobiologen den Schaltplan des Gehirns entschlüsseln.

© Julia Kuhl

Dies wollen Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried nun mit Hilfe künstlicher Intelligenz ändern. Sie haben künstliche neuronale Netze so trainiert, dass die Rekonstruktion von Nervenzellschaltplänen enorm beschleunigt wird.

Nervenzellen brauchen Gesellschaft. Während eine einzelne Zelle wenig bewirken kann, werden Nervenzellen im Verbund zu einem mächtigen Netzwerk, das zum Beispiel unser Verhalten steuert. Dabei tauschen die Zellen Informationen über ihre Kontaktstellen, die Synapsen, aus.

Das Wissen darüber, welche Nervenzellen wann und wo miteinander verbunden sind, trägt entscheidend dazu bei, grundlegende Hirnfunktionen ebenso wie übergeordnete Prozesse wie Lernen, Gedächtnis, Bewusstsein und Erkrankungen des Nervensystems zu verstehen. Denn Forscher vermuten, dass der Schlüssel zu alldem in der Verschaltung der rund 100 Milliarden Zellen im menschlichen Gehirn liegt.

Um diesen Schlüssel verwenden zu können, müsste jedoch das Konnektom erfasst werden – jede Nervenzelle eines Gehirns mit ihren tausenden Kontakten und Partnerzellen. Noch vor wenigen Jahren schien so etwas gänzlich unmöglich.

Von „unmöglich“ lassen sich die Wissenschaftler in der Abteilung “Elektronen – Photonen – Neuronen“ am Max-Planck-Institut für Neurobiologie allerdings kaum abschrecken. So entwickelten und verbesserten sie in den vergangenen Jahren Färbe- und Mikroskopiemethoden, mit denen Hirngewebeproben in einem automatisierten Prozess in dreidimensionale, hochaufgelöste Elektronenmikroskopbilder verwandelt werden.

Ihr neuestes Mikroskop, dass als Prototyp in der Abteilung im Einsatz ist, tastet die Oberfläche einer Probe gleich mit 91 Elektronenstrahlen parallel ab, bevor die nächste Probenebene freigelegt wird. Im Vergleich zum Vorgängermodell erhöht sich die Datenerfassungsrate so um mehr als das Fünfzigfache. Ein ganzes Mäusegehirn könnte anstatt in vielen Dekaden, innerhalb weniger Jahre erfasst werden.

Während es somit nun möglich ist, ein Hirngewebestück in wenigen Wochen in Billionen Pixel zu zerlegen, dauert die Analyse dieser elektronenmikroskopischen Bilder viele Jahre. Das liegt daran, dass herkömmliche Computeralgorithmen oft zu ungenau sind, um die hauchdünnen Fortsätze der Nervenzellen über lange Strecken zuverlässig zu verfolgen und die Synapsen zu erkennen. Daher müssen immer noch Menschen in stundenlanger Bildschirmarbeit die Synapsen in den Bilderstapeln aus dem Elektronenmikroskop identifizieren.

Doch auch diese Hürde nehmen nun die Wissenschaftler um Jörgen Kornfeld mit Hilfe künstlicher neuronaler Netze. Diese Algorithmen können aus Beispielen und Erfahrungen lernen und dieses Wissen auch verallgemeinern. Bereits heute werden sie sehr erfolgreich in der Bildverarbeitung und Mustererkennung eingesetzt.

„Da war der Weg nicht weit zum Einsatz eines künstlichen Netzes für die Analyse eines echten neuronalen Netzes“, so Jörgen Kornfeld, der Leiter der Studie. Ganz so einfach wie es klingt, war es dann doch nicht. In monatelanger Arbeit trainierten und testeten die Wissenschaftler sogenannte "Convolutional Neural Networks" darauf, Zellfortsätze, Zellbestandteile und Synapsen in den Bilddaten zu erkennen und voneinander zu unterscheiden.

Das so entstandene SyConn Netzwerk kann nun, nach einer kurzen Anlernphase, diese Strukturen selbstständig und äußerst zuverlässig identifizieren. Die Anwendung auf Datensätze aus dem Singvogelgehirn zeigte, dass SyConn so zuverlässig ist, dass ein menschliches Fehlerlesen überflüssig wird.

„Das ist absolut fantastisch, denn mit einer so geringen Fehlerrate hatten wir eigentlich gar nicht gerechnet“, freut sich Kornfeld über den Erfolg von SyConn, einem Teil seiner Doktorarbeit. Eine berechtigte Freude, denn die neu entwickelten künstlichen neuronalen Netze können Neurobiologen in Zukunft viele tausend Stunden monotoner Arbeit abnehmen – und so die Zeit bis zur Entschlüsselung des Konnektoms, und vielleicht auch des Bewusstseins, um viele Jahre verkürzen.

ORIGINALVERÖFFENTLICHUNG
Sven Dorkenwald, Philipp Schubert, Marius F. Killinger, Gregor Urban, Shawn Mikula, Fabian Svara, Jörgen Kornfeld
Automated synaptic connectivity inference for volume electron microscopy
Nature Methods, online am 27. Februar 2017

KONTAKT
Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie
Presse- und Öffentlichkeitsarbeit
Am Klopferspitz 18
82152 Martinsried
Tel.: 089 8578 3514
Email: merker@neuro.mpg.de

Jörgen Kornfeld
Max-Planck-Institut für Neurobiologie
Abteilung Elektronen – Photonen – Neuronen
Am Klopferspitz 18
82152 Martinsried
Tel.: 089 8578 - 3563
Email: kornfeld@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/denk - Webseite der Abteilung Elektronen - Photonen - Neuronen am MPI für Neurobiologie

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Berichte zu: Elektronen Gehirn Intelligenz Nervenzellen Neurobiologie Neuronen Photonen Synapsen Zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte