Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit künstlicher Fotosynthese gegen den Klimawandel

18.11.2016

Das Treibhausgas Kohlendioxid könnte sich künftig mit einem neuen biologischen Mittel aus der Atmosphäre entfernen lassen. Denn ein Team um Tobias Erb, Leiter einer Forschungsgruppe am Max-Planck-Institut für terrestrische Mikrobiologie in Marburg hat nach dem Vorbild der Fotosynthese einen künstlichen, aber komplett biologischen Stoffwechselweg entwickelt, der Kohlendioxid aus der Luft mit 20 Prozent höherer Effizienz bindet, als das Pflanzen fotosynthetisch schaffen. Die Forscher haben das neue System, das sie in dieser Woche im Wissenschaftsmagazin Science vorstellen, zunächst am Reißbrett geplant – und dann im Labor in die Realität umgesetzt.

Eine der drängendsten Herausforderungen unserer Zeit ist der Klimawandel. Seit Beginn der industriellen Revolution ist die Konzentration an Kohlendioxid (CO2) in der Luft durch den Menschen stetig angestiegen. Diese Zunahme heizt nach aller wissenschaftlichen Erkenntnis den Treibhauseffekt an und verändert das Klima. Die Konsequenzen sind bereits spürbar.


Marburger Max-Planck-Wissenschaftler beim Enzym-Design für den CETCH-Zyklus, der Kohlendioxid aus der Luft effizienter bindet als der Calvin-Zyklus der Pflanzen

mediomix / MPI für terrestrische Mikrobiologie

Um die ökologische, aber auch soziale Herausforderung des Klimawandels zu meistern, „müssen wir also neue Wege finden, um das überschüssige CO2 nachhaltig aus der Luft zu entfernen und in etwas Nützliches umzuwandeln“, betont Erb, der im Marburger Max-Planck-Institut eine Nachwuchsgruppe leitet.

Theoretisch könnte man das Problem mit einer höheren land- und forstwirtschaftlichen Produktivität angehen. Denn Pflanzen fixieren über die Fotosynthese Kohlendioxid aus der Luft. Aus dem CO2 produzieren sie über einen schrittweisen Prozess, den sogenannten Calvin-Zyklus, Zucker für ihre Ernährung.

Jeder einzelne biochemische Schritt hin zum Zucker wird von einem eigenen Enzym angestoßen beziehungsweise beschleunigt. Die verschiedenen Biokatalysatoren sind dabei genau aufeinander abgestimmt, damit sie zusammenarbeiten können. Doch es gibt ein Problem: Das CO2-bindende Enzym des Calvin-Zyklus in Pflanzen, in Fachkreisen RuBisCo genannt, ist vergleichsweise langsam. Außerdem irrt es sich häufig: Bei jeder fünften Reaktion schnappt sich RuBisCo statt eines CO2- ein Sauerstoffmolekül.

Ein Bakterien-Enzym bindet CO2 fehlerfrei und mit Turbo

„Da gibt es in der Natur CO2-fixierende Enzyme ganz anderer Qualität“, betont Erb. Solche Enzyme, die schneller und effizienter sind als die RuBisCo in Pflanzen, arbeiten natürlicherweise im Stoffwechsel von Mikroorganismen. Eines dieser Enzyme, mit dem unaussprechlichen Namen „Crotonyl-CoA Carboxylase/Reductase“, hat Erb selbst aus einem Bakterium isoliert. Dieses Enzym irrt sich so gut wie nie – und arbeitet zudem gewissermaßen mit einem Turbo, denn es funktioniert zwanzigmal schneller als sein Gegenstück aus der Pflanzenwelt.

Noch in seiner Zeit an der ETH Zürich begannen Erb und sein Team darüber nachzudenken, wie man das Turbo-Enzym nutzen könnte, um damit CO2 in organische Kohlenstoffverbindungen umzuwandeln. Doch dafür braucht es, wie im Calvin-Zyklus, weitere Enzyme. Diese konnten die Forscher aber nicht einfach aus dem Calvin-Zyklus übernehmen, weil dessen Biokatalysatoren nicht zum Turbo-Enzym passen.

Ein Stoffwechselweg mit 17 Enzymen aus neun Organismen

Daher hat Tobias Erb zunächst theoretisch einen neuen, auf den Namen CETCH getauften Zyklus (für Crotonyl-CoA/Ethylmalonyl-CoA/Hydroxybutyryl-CoA) mit möglichen passenden Enzymen und sämtlichen biochemischen Reaktionen entworfen. Aus Datenbanken mit 40.000 bekannten Enzymen hat er dann ein paar Dutzend Kandidaten gefischt, die die geplanten Aufgaben erfüllen könnten.

Anschließend hat Erbs Team in nur zwei Jahren sämtliche Enzyme in einem Reagenzglas zu einem „robust funktionierenden, optimierten Zyklus“ zusammengefügt. Dabei haben die Forscher immer wieder neue Biokatalysatoren getestet, oft gentechnisch verändert und neue Kombinationen von Enzymen ausprobiert, um das System zu finden, indem die Komponenten optimal zusammen arbeiten.

Am Ende stand ein künstlicher CO2-fixierender Zyklus – etwas, das in dieser Art nach Erbs Wissen „noch niemand geschafft haben dürfte.“ Beteiligt sind 17 verschiedene Enzyme, darunter drei „Designer-Enzyme“, aus neun verschiedenen Organismen bis hin zum Menschen. Unterm Strich bindet der CETCH-Zyklus, mit dem die Marburger Forscher die Dunkelreaktion der Fotosynthese nachahmen, CO2 mit 20 Prozent höherer Effizienz als der Calvin-Zyklus der Pflanzen.

Der CETCH-Zyklus kann verschiedene Substanzen produzieren

Der synthetische Stoffwechselweg des Marburger Max-Planck-Teams ist somit eine Pionierarbeit auf dem Gebiet der Synthetischen Biologie. In deren Zuge wollen Wissenschaftler unter anderem nach biologischen Prinzipien neue, für den Menschen nützlichen Systeme und Organismen bauen.

In Erbs Modell-Zyklus zieht seine Energie derzeit aus einer chemischen Reaktion und nicht aus Licht wie bei der Fotosynthese der Pflanzen, und am Ende kommt dabei die sogennante Glyoxalsäure heraus. „Der CETCH-Zyklus“, sagt der Marburger, „kann aber so verändert werden, dass dabei zum Beispiel Rohstoffe für Biodiesel entstehen.“ Oder ein Antibiotikum oder viele andere Substanzen.

Anwendung in Bakterien, Algen oder kombiniert mit Solarzellen
Für die praktische Anwendung könnten die nötigen Gene für den Zyklus in ein Bakterium oder eine Alge verfrachtet werden. Diese veränderten Mikroorganismen würden dann das jeweils gewünschte Produkt herstellen – und könnten dazu einfach das CO2 aus der Atmosphäre verwenden. Sie würden also das atmosphärische Treibhausgas nutzbringend umwandeln. Der CETCH-Zyklus könnte sich aber auch an Solarzellen koppeln lassen und die Elektronen, die diese liefern, zur Umwandlung von CO2 in nützliche chemische Verbindungen verwenden.

Technisch erscheinen derlei Visionen nicht mehr unmöglich. Das Verständnis, wie man biologische Prozesse von Grund auf neu konstruieren kann, wird momentan innerhalb des MaxSynBio-Netzwerkes der Max-Planck-Gesellschaft intensiv erforscht. Tobias Erb möchte seinen Teil dazu beitragen, die grundlegenden Konstruktionsprinzipien des Metabolismus zu verstehen. „Unsere Wissenschaft zielt darauf ab, die Umwandlung von unbelebtem CO2 in organische Materie neu zu erfinden. Unser Traum ist es, mithilfe von maßgeschneiderten Enzymen einen synthetischen Metabolismus 2.0 zu erschaffen, der jede beliebige Verbindung aus CO2 herstellen kann.“

KW

Kontakt:
Dr. Tobias J. Erb
Max-Planck-Institut für terrestrische Mikrobiologie
Mail: toerb@mpi-marburg.mpg.de
Tel.: +49 6421 178-426

Originalveröffentlichung:
A synthetic pathway fort he fixation of carbon dioxide in vitro
Thomas Schwander, Lennart Schada von Borzyskowski, Simon Burgener, Niña Socorro Cortina und Tobias J. Erb
Science, 18. November 2016; doi: 10.1126/science aah5237

Weitere Informationen:

https://www.synthetische-biologie.mpg.de/

Peter Hergersberg | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zellen auf Wanderschaft: Falten in der Zellmembran liefern Material für nötige Auswölbungen
23.11.2017 | Westfälische Wilhelms-Universität Münster

nachricht Neues Verfahren zum Nachweis eines Tumormarkers in bösartigen Lymphomen
23.11.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung