Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Hilfe von Licht den Proteintransport aus dem Zellkern heraus steuern

16.02.2016

Heidelberger Wissenschaftler nutzen lichtempfindliches Protein, das gentechnisch verändert wurde

Mit Hilfe eines lichtempfindlichen pflanzlichen Proteins, das gentechnisch verändert wurde, lässt sich der Proteintransport aus dem Zellkern heraus durch Lichteinfluss kontrollieren: Ein solches „Werkzeug“ aus dem Bereich der Optogenetik haben jetzt erstmals Biologen der Universität Heidelberg und des Deutschen Krebsforschungszentrums (DKFZ) entwickelt.


Bild: Dominik Niopek

Mikroskopieaufnahmen von menschlichen, embryonalen Nierenzellen in Kultur. Diese Zellen wurden gentechnisch verändert und erzeugen ein leuchtendes Protein, das an das neue optogenetische Werkzeug (LOV2-NES-Hybrid) gekoppelt ist. Die mit einem blauen Laser beleuchteten Zellen (blaue Pfeile) zeigen einen effizienten Export des Proteins aus dem Zellkern heraus. In unbeleuchteten Zellen (rote Pfeile) bleibt das Protein hingegen im Zellkern.

Die Wissenschaftler unter der Leitung von Dr. Barbara Di Ventura und Prof. Dr. Roland Eils nutzten dazu die Methoden der Synthetischen Biologie und kombinierten einen Lichtsensor aus der Haferpflanze mit einem Transportsignal. Damit ist es nun möglich, den Ort und entsprechend die Aktivität von Proteinen in Säugerzellen durch Beleuchtung von außen präzise zu steuern. Die Forschungsergebnisse wurden in „Nature Communications“ veröffentlicht.

Eukaryotische Zellen weisen eine räumliche Trennung zwischen dem Zellkern und dem Rest der Zelle auf. „Diese Unterteilung schützt die Mechanismen beim Kopieren und Lesen der genetischen Information vor Störungen, die durch andere zellulare Prozesse wie zum Beispiel die Protein-Synthese oder die Energie-Produktion hervorgerufen werden“, sagt Prof. Eils, der Direktor des BioQuant-Zentrums der Universität Heidelberg ist und die Bioinformatik-Abteilung an der Ruperto Carola und am DKFZ leitet. Dabei können Proteine und andere Makromoleküle durch den Kernporenkomplex in den Zellkern eindringen und ihn verlassen, um eine Vielzahl von biologischen Prozessen zu steuern.

Während kleinere Proteine passiv durch die Kernporen diffundieren, müssen größere Partikel auf sogenannte Träger-Proteine aufsatteln, um diese „Reise“ anzutreten. In der Regel geben kurze Peptide auf der Protein-Oberfläche das Signal an die Träger, dass das Protein zum Transport bereit ist.

Dieses Signal wird als Nuclear Localization Signal (NLS) – im Fall des Transports in den Zellkern hinein – und als Nuclear Export Sequence (NES) – im Fall des Transports aus dem Zellkern heraus – bezeichnet. „Ein künstlich hervorgerufener ,Import‘ oder ,Export‘ ausgewählter Proteine würde es uns erlauben, deren Aktivität in der lebenden Zelle zu kontrollieren“, sagt Dr. Di Ventura, die Gruppenleiterin in der Abteilung von Prof. Eils ist.

Das Labor von Dr. Di Ventura hat sich auf die Optogenetik spezialisiert, ein relativ junges Forschungsgebiet der Synthetischen Biologie. Dabei handelt es sich um eine Kombination von Methoden der Optik und der Genetik mit dem Ziel, bestimmte Funktionen in lebenden Zellen mit Hilfe von Licht an- oder abzuschalten. Dazu werden lichtempfindliche Proteine auf gentechnischem Weg verändert und anschließend in bestimmte Zielzellen eingebracht. Unter Lichteinfluss ist es dann möglich, das Verhalten der in dieser Weise modifizierten Zellen zu kontrollieren.

Ausgangspunkt der aktuell publizierten Arbeiten zu einem optogenetischen Exportsystem waren vorangegangene Studien anderer Arbeitsgruppen zur sogenannten LOV2-Domäne, die ursprünglich aus der Haferpflanze stammt. Diese Domäne dient in der Natur als Lichtsensor und ist unter anderem an der Ausrichtung der Pflanze in Richtung Sonnenlicht beteiligt. Die LOV2-Domäne ändert ihre dreidimensionale Struktur grundlegend, sobald sie mit blauem Licht in Berührung kommt, wie Dominik Niopek, der Erstautor der Studie, erläutert.

Die Eigenschaft der lichtabhängigen Strukturänderung kann nun gezielt ausgenutzt werden, um zelluläre Signalsequenzen – wie beispielsweise das Kernexportsignal (NES) – künstlich zu steuern. Dafür entwickelte Dominik Niopek zunächst ein hybrides LOV2-NES-Protein, das aus der LOV2-Domäne des Hafers und einem künstlichen Kernexportsignal besteht. Im dunklen Zustand ist das Signal in der LOV2-Domäne versteckt und für die Zelle unsichtbar. Durch den Einfluss von Licht ändert sich die LOV2-Struktur; das Kernexportsignal wird sichtbar und löst den Export der LOV2-Domäne aus dem Zellkern heraus aus.

„Das hybride LOV2-NES-Protein kann prinzipiell an beliebige zelluläre Proteine angehängt werden, um deren Kernexport mit Licht zu kontrollieren“, sagt Prof. Eils. Der Wissenschaftler und sein Team haben dies am Beispiel des Proteins p53 gezeigt. Es gehört zur Familie der krebsunterdrückenden Proteine, die das Zellwachstum überwachen und bei der Zellteilung genetischen Defekten vorbeugen. Wie Roland Eils erläutert, ist p53 in einer Vielzahl aggressiver Tumore durch eine schädliche Genmutation ausgeschaltet, wodurch sich die Tumorzellen unkontrolliert vermehren können.

Mit Hilfe des hybriden LOV2-NES-Proteins konnten die Heidelberger Forscher den Kernexport von p53 gezielt kontrollieren und auf diese Weise dessen genregulatorische Aktivität durch Licht beeinflussen. „Diese neue Möglichkeit der direkten Kontrolle von p53 in lebenden Säugerzellen hat weitreichendes Potential, um seine komplexe Funktionsweise detailliert aufzuklären. Wir erhoffen uns davon auch neue Hinweise darauf, welche Rolle mögliche Defekte der p53-Regulation im Zusammenhang mit der Entstehung von Krebs spielen“, betont Dr. Di Ventura.

Die Wissenschaftler sind davon überzeugt, dass mit Hilfe ihres neuen optogenetischen Werkzeuges außerdem wichtige Erkenntnisse zur Dynamik der Proteintransporte und ihrem Einfluss auf das Verhalten von Zellen gewonnen werden können. „Unsere Forschung kann nur so gut sein, wie es unsere ,Tools‘ sind“, sagt Prof. Eils. „Die Entwicklung innovativer molekularer Werkzeuge ist daher der Schlüssel für das Verständnis der grundlegenden zellulären Funktionen sowie der Mechanismen, die Krankheiten verursachen.“

Originalpublikation:
D. Niopek, P. Wehler, J. Roensch, R. Eils and B. Di Ventura: Optogenetic control of nuclear protein export. Nature Communications (published online 8 February 2016). doi: 10.1038/NCOMMS10624

Kontakt:
Prof. Dr. Roland Eils
Universität Heidelberg – Institut für Pharmazie und Molekulare Biotechnologie
Deutsches Krebsforschungszentrum
Telefon (06221) 54-51290 (Uni) und 42–3600 (DKFZ)
r.eils@dkfz-Heidelberg.de

Universität Heidelberg
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-Heidelberg.de

Weitere Informationen:

Abteilung Roland Eils – http://ibios.dkfz.de/tbi

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: Biologie Licht Optogenetik Proteintransport Säugerzellen Ventura Zelle Zellkern p53

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kontinentalrand mit Leckage
27.03.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Neuen molekularen Botenstoff bei Lebererkrankungen entdeckt
27.03.2017 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE