Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Hilfe von Licht den Proteintransport aus dem Zellkern heraus steuern

16.02.2016

Heidelberger Wissenschaftler nutzen lichtempfindliches Protein, das gentechnisch verändert wurde

Mit Hilfe eines lichtempfindlichen pflanzlichen Proteins, das gentechnisch verändert wurde, lässt sich der Proteintransport aus dem Zellkern heraus durch Lichteinfluss kontrollieren: Ein solches „Werkzeug“ aus dem Bereich der Optogenetik haben jetzt erstmals Biologen der Universität Heidelberg und des Deutschen Krebsforschungszentrums (DKFZ) entwickelt.


Bild: Dominik Niopek

Mikroskopieaufnahmen von menschlichen, embryonalen Nierenzellen in Kultur. Diese Zellen wurden gentechnisch verändert und erzeugen ein leuchtendes Protein, das an das neue optogenetische Werkzeug (LOV2-NES-Hybrid) gekoppelt ist. Die mit einem blauen Laser beleuchteten Zellen (blaue Pfeile) zeigen einen effizienten Export des Proteins aus dem Zellkern heraus. In unbeleuchteten Zellen (rote Pfeile) bleibt das Protein hingegen im Zellkern.

Die Wissenschaftler unter der Leitung von Dr. Barbara Di Ventura und Prof. Dr. Roland Eils nutzten dazu die Methoden der Synthetischen Biologie und kombinierten einen Lichtsensor aus der Haferpflanze mit einem Transportsignal. Damit ist es nun möglich, den Ort und entsprechend die Aktivität von Proteinen in Säugerzellen durch Beleuchtung von außen präzise zu steuern. Die Forschungsergebnisse wurden in „Nature Communications“ veröffentlicht.

Eukaryotische Zellen weisen eine räumliche Trennung zwischen dem Zellkern und dem Rest der Zelle auf. „Diese Unterteilung schützt die Mechanismen beim Kopieren und Lesen der genetischen Information vor Störungen, die durch andere zellulare Prozesse wie zum Beispiel die Protein-Synthese oder die Energie-Produktion hervorgerufen werden“, sagt Prof. Eils, der Direktor des BioQuant-Zentrums der Universität Heidelberg ist und die Bioinformatik-Abteilung an der Ruperto Carola und am DKFZ leitet. Dabei können Proteine und andere Makromoleküle durch den Kernporenkomplex in den Zellkern eindringen und ihn verlassen, um eine Vielzahl von biologischen Prozessen zu steuern.

Während kleinere Proteine passiv durch die Kernporen diffundieren, müssen größere Partikel auf sogenannte Träger-Proteine aufsatteln, um diese „Reise“ anzutreten. In der Regel geben kurze Peptide auf der Protein-Oberfläche das Signal an die Träger, dass das Protein zum Transport bereit ist.

Dieses Signal wird als Nuclear Localization Signal (NLS) – im Fall des Transports in den Zellkern hinein – und als Nuclear Export Sequence (NES) – im Fall des Transports aus dem Zellkern heraus – bezeichnet. „Ein künstlich hervorgerufener ,Import‘ oder ,Export‘ ausgewählter Proteine würde es uns erlauben, deren Aktivität in der lebenden Zelle zu kontrollieren“, sagt Dr. Di Ventura, die Gruppenleiterin in der Abteilung von Prof. Eils ist.

Das Labor von Dr. Di Ventura hat sich auf die Optogenetik spezialisiert, ein relativ junges Forschungsgebiet der Synthetischen Biologie. Dabei handelt es sich um eine Kombination von Methoden der Optik und der Genetik mit dem Ziel, bestimmte Funktionen in lebenden Zellen mit Hilfe von Licht an- oder abzuschalten. Dazu werden lichtempfindliche Proteine auf gentechnischem Weg verändert und anschließend in bestimmte Zielzellen eingebracht. Unter Lichteinfluss ist es dann möglich, das Verhalten der in dieser Weise modifizierten Zellen zu kontrollieren.

Ausgangspunkt der aktuell publizierten Arbeiten zu einem optogenetischen Exportsystem waren vorangegangene Studien anderer Arbeitsgruppen zur sogenannten LOV2-Domäne, die ursprünglich aus der Haferpflanze stammt. Diese Domäne dient in der Natur als Lichtsensor und ist unter anderem an der Ausrichtung der Pflanze in Richtung Sonnenlicht beteiligt. Die LOV2-Domäne ändert ihre dreidimensionale Struktur grundlegend, sobald sie mit blauem Licht in Berührung kommt, wie Dominik Niopek, der Erstautor der Studie, erläutert.

Die Eigenschaft der lichtabhängigen Strukturänderung kann nun gezielt ausgenutzt werden, um zelluläre Signalsequenzen – wie beispielsweise das Kernexportsignal (NES) – künstlich zu steuern. Dafür entwickelte Dominik Niopek zunächst ein hybrides LOV2-NES-Protein, das aus der LOV2-Domäne des Hafers und einem künstlichen Kernexportsignal besteht. Im dunklen Zustand ist das Signal in der LOV2-Domäne versteckt und für die Zelle unsichtbar. Durch den Einfluss von Licht ändert sich die LOV2-Struktur; das Kernexportsignal wird sichtbar und löst den Export der LOV2-Domäne aus dem Zellkern heraus aus.

„Das hybride LOV2-NES-Protein kann prinzipiell an beliebige zelluläre Proteine angehängt werden, um deren Kernexport mit Licht zu kontrollieren“, sagt Prof. Eils. Der Wissenschaftler und sein Team haben dies am Beispiel des Proteins p53 gezeigt. Es gehört zur Familie der krebsunterdrückenden Proteine, die das Zellwachstum überwachen und bei der Zellteilung genetischen Defekten vorbeugen. Wie Roland Eils erläutert, ist p53 in einer Vielzahl aggressiver Tumore durch eine schädliche Genmutation ausgeschaltet, wodurch sich die Tumorzellen unkontrolliert vermehren können.

Mit Hilfe des hybriden LOV2-NES-Proteins konnten die Heidelberger Forscher den Kernexport von p53 gezielt kontrollieren und auf diese Weise dessen genregulatorische Aktivität durch Licht beeinflussen. „Diese neue Möglichkeit der direkten Kontrolle von p53 in lebenden Säugerzellen hat weitreichendes Potential, um seine komplexe Funktionsweise detailliert aufzuklären. Wir erhoffen uns davon auch neue Hinweise darauf, welche Rolle mögliche Defekte der p53-Regulation im Zusammenhang mit der Entstehung von Krebs spielen“, betont Dr. Di Ventura.

Die Wissenschaftler sind davon überzeugt, dass mit Hilfe ihres neuen optogenetischen Werkzeuges außerdem wichtige Erkenntnisse zur Dynamik der Proteintransporte und ihrem Einfluss auf das Verhalten von Zellen gewonnen werden können. „Unsere Forschung kann nur so gut sein, wie es unsere ,Tools‘ sind“, sagt Prof. Eils. „Die Entwicklung innovativer molekularer Werkzeuge ist daher der Schlüssel für das Verständnis der grundlegenden zellulären Funktionen sowie der Mechanismen, die Krankheiten verursachen.“

Originalpublikation:
D. Niopek, P. Wehler, J. Roensch, R. Eils and B. Di Ventura: Optogenetic control of nuclear protein export. Nature Communications (published online 8 February 2016). doi: 10.1038/NCOMMS10624

Kontakt:
Prof. Dr. Roland Eils
Universität Heidelberg – Institut für Pharmazie und Molekulare Biotechnologie
Deutsches Krebsforschungszentrum
Telefon (06221) 54-51290 (Uni) und 42–3600 (DKFZ)
r.eils@dkfz-Heidelberg.de

Universität Heidelberg
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-Heidelberg.de

Weitere Informationen:

Abteilung Roland Eils – http://ibios.dkfz.de/tbi

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: Biologie Licht Optogenetik Proteintransport Säugerzellen Ventura Zelle Zellkern p53

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forscher vergleichen Biodiversitätstrends mit dem Aktienmarkt
06.12.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie

Tempo-Daten für das „Navi“ im Kopf

06.12.2016 | Medizin Gesundheit

Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten

06.12.2016 | Medizintechnik