Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Elektronen und Ionen ins Gehirn schauen

07.10.2015

Erstmals am Standort Göttingen: Hochauflösende 3D-Elektronenmikroskopie für die Neurowissenschaften

3D-Blick ins Gehirn für die Neurowissenschaften am Forschungsstandort Göttingen Campus: Das Göttinger Exzellenzcluster und DFG-Forschungszentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB) der Universitätsmedizin Göttingen haben gemeinsam mit dem Max-Planck-Institut für Experimentelle Medizin ein Rasterelektronenmikroskop mit fokussiertem Ionenstrahl in Betrieb genommen.


Abbild einer in Plastik eingebetteten Probe aus dem Hirnstamm der Maus. Zu erkennen sind die Myelinscheiden großer Nervenfasern, eine Synapse und ein Teil eines Blutgefäßes.

Foto: möbious/mpi-em

Das hochmoderne Zeiss Crossbeam 450 Mikroskop verbindet zwei Techniken zur Aufnahme hochauflösender Bilder: die Rasterelektronenmikroskopie und eine Ionenfeinstrahlanlage zur Oberflächenanalyse und -verarbeitung. Die Kombination beider Verfahren ermöglicht die dreidimensionale Darstellung kleinster Strukturen bis hin zu Vesikeln innerhalb einer Synapse in hoher Auflösung.

Mit dem neuen Gerät lassen sich jetzt am Forschungsstandort Göttingen auch neurowissenschaftliche Fragestellungen klären, die eine solche Rekonstruktion kleinster Strukturen erfordern. Finanziert wurde das hochmoderne Mikroskop aus Mitteln der Deutschen Forschungsgemeinschaft (DFG) und der Max-Planck-Gesellschaft (MPG).

„Die Technik wurde bisher vor allem in der Materialphysik verwendet. Nun kann sie erstmals auch am Standort Göttingen im Bereich der biomedizinischen Forschung eingesetzt werden“, sagt Dr. Wiebke Möbius vom Max-Planck-Institut für Experimentelle Medizin in Göttingen und Leiterin der Technologie-Plattform Elektronenmikroskopie des CNMPB.

Der Auflösungsbereich des neuen Gerätes erstreckt sich von der räumlichen Abbildung größerer Zusammenhänge, wie lokaler neuronaler Netze oder Einheiten aus Myelinscheiden und Nervenfasern, bis hin zu kleinen Details, wie der Verteilung von Vesikeln innerhalb einer Synapse. Damit werden die technischen Abbildungsmöglichkeiten des CNMPB um eine dreidimensionale Strukturabbildung in hoher Auflösung ergänzt und erweitert. Das Forschungszentrum verfügte bereits mit der STED Mikroskopie von Nobelpreisträger Prof. Dr. Stefan W. Hell über eine preisgekrönte hochauflösende Lichtmikroskopie.

DAS VERFAHREN: 3D-ELEKTRONENMIKROSKOPIE

Um eine dreidimensionale Abbildung kleinster Strukturen zu erreichen, müssen An-sichten feinster Schichten einer Gewebeprobe abgebildet und die Bildinformationen anschließend die einem dreidimensionalen Struktur rekonstruiert werden. Mittels Rasterelektronenmikroskopie wird dafür zunächst ein Elektronenstrahl über die Oberfläche eines Objekts geführt (gerastert), um ein Abbild der Oberfläche zu er-zeugen. Anschließend kommt ein Ionenstrahl aus Gallium-Ionen zum Einsatz. Mit ihm lässt sich ein Objekt wie ein Werkstück mit einem sehr feinen Skalpell bearbeiten. Durch die Kombination beider Techniken wird nach jedem Bearbeitungsschritt Oberflächenmaterial abgetragen und das Objekt erneut erfasst. Auf diese Weise können dreidimensionale Detailbilder rekonstruiert und zu einem komplexen Abbild in hoher Auflösung zusammengefasst werden.

TECHNISCHE DETAILS ZUM VERFAHREN

Damit das Abtragen feinster Schichten von den Gewebeproben gelingt, wird das Gewebe zunächst mit Schwermetallen imprägniert („Kontrastierung“) und in Plastik eingebettet. Im Elektronenmikroskop muss dann mit dem fokussierten Ionenstrahl eine glatte Front in den Gewebeblock geschnitten werden. Von dieser glatten Oberfläche, das sogenannte „block-face“, lässt sich durch Scannen mit dem Elektronenstrahl ein Abbild der eingeschlossenen Strukturen in einer Fläche von ungefähr 20 µm mal 20 µm erstellen.

Die Zellstrukturen werden sichtbar, weil sich unterschiedlich viel Schwermetall im Gewebe einlagert. So entsteht ein Bild aus Hell-Dunkel-Kontrasten, wenn der Elektronenstrahl gestreut wird. Ist ein Bild erzeugt, wird mit dem Ionenstrahl eine dünne Schicht vom Gewebeblock abgetragen und ein weiteres Bild des darunter liegenden Gewebeabschnitts erzeugt. Durch kontinuierliche Wiederholung dieses Vorgangs („serial block-face imaging“) entsteht über viele Stunden eine Serie von Bildern. Auf deren Grundlage kann anschließend am Computer eine dreidimensionale Rekonstruktion der Gewebeprobe erzeugt werden. Die Besonderheit der Ionenstrahl-basierten Technik besteht darin, dass vom Gewebeblock Material in unvorstellbar kleinen Schritten von nur 5 nm abgetragen werden kann. Dies entspricht gerade mal 5 Millionstel Millimetern und ermöglicht damit eine hohe räumliche Auflösung kleinster Strukturen.

KONTAKT:
Max-Planck-Institut für Experimentelle Medizin
Hermann-Rein-Str. 3, 37075 Göttingen
Elektronenmikroskopie, Neurogenetik
CNMPB – Zentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns Exzellenzcluster 171 – DFG-Forschungszentrum 103
Dr. Wiebke Möbius, moebius@em.mpg.de
Telefon 0551 / 38 99 736

WEITERE INFORMATIONEN:
CNMPB – Zentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns Exzellenzcluster 171 – DFG-Forschungszentrum 103
Dr. Heike Conrad, Telefon 0551 / 39-7065
Humboldtallee 23, 37073 Göttingen
heike.conrad@med.uni-goettingen.de
  www.cnmpb.de

Stefan Weller | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy