Mit einem künstlich zusammengesetzten kleinen Virusfragment auf dem Weg zum Chikungunya-Impfstoff?

Die dreidimensionale Struktur des Chikungunya-Virus-Hüllproteins E2. Die rot markierten Bereiche wurden für die Impfstoffansätze verwendet. www.rcsb.org/pdb/explore/explore.do?structureId=3N44

Das Chikungunya-Virus (CHIKV) wird durch Aedes-Stechmücken übertragen und löst beim Menschen eine als Chikungunyafieber bekannte Infektionskrankheit aus. CHIKV kommt vor allem in den Tropen und Subtropen vor und hat bereits Epidemien in Afrika, in Gebieten des Indischen Ozeans, in Südostasien sowie inzwischen auch in der Karibik, Mittel- und Südamerika ausgelöst.

Es wird geschätzt, dass bisher etwa 1,2 Millionen Menschen bei der Epidemie in Amerika infiziert wurden. Da die Mücke Aedes albopictus (Asiatische Tigermücke) inzwischen auch im Süden Europas und der USA vorkommt, muss eine weitere Ausbreitung des Virus in Betracht gezogen werden.

Nach Rückkehr aus einem Endemiegebiet müssen Blutspender gemäß Anordnung des Paul-Ehrlich-Instituts von 2007 derzeit für mindestens zwei Wochen von der Spende zurückgestellt werden, um eine Infektion über das Blut zu verhindern.

Die Erkrankung ist durch Fieber und starke Gelenkbeschwerden gekennzeichnet, was zu ihrem Namen – Chikungunya = der gekrümmt Gehende – führte. In 30 bis 40 Prozent der Fälle können die Gelenkschmerzen über Monate oder sogar Jahre andauern. Bisherige Versuche, geeignete Impfstoffe zu entwickeln, blieben erfolglos.

Für die Entwicklung eines wirksamen Impfstoffs ist es von entscheidender Bedeutung, eine geeignete Antigenstruktur des Virus zu identifizieren, die eine wirksame Immunantwort beim Menschen auslöst. Bisherige Ansätze benutzten das gesamte E2-Oberflächenprotein als Impfstoffbasis, teilweise in Kombination mit weiteren Virusproteinen. Allerdings handelt es sich hierbei um eine relativ große Proteinstruktur, was eine kommerzielle Impfstoffproduktion erschweren würde.

Forscher um Prof. Barbara Schnierle, Leiterin des Fachgebiets „AIDS, neue und neuartige Erreger“ der Abteilung „Virologie“ des Paul-Ehrlich-Instituts, gingen der Frage nach, ob nicht auch kleine spezifische und weniger aufwendig herzustellende Abschnitte von E2 ausreichen, um eine schützende Immunantwort auszulösen.

Auf Basis der dreidimensionalen Struktur des Proteins wählten die PEI-Forscher verschiedene oberflächenexponierte Bereiche aus und fügten sie zu mehreren künstlichen Proteinfragmenten zusammen. Nach Produktion in E.coli und Aufreinigung wurden Mäuse mit diesen Proteinabschnitten immunisiert und später das Blut der Tiere auf neutralisierende Antikörper untersucht. Ein als sAB+ bezeichnetes Fragment induzierte hierbei am wirkungsvollsten neutralisierende Antikörper.

Es wurde zur Immunisierung von Mäusen eingesetzt, die anschließend mit dem Wildtyp-Chikungunya-Virus infiziert wurden. Im Vergleich zu nicht geimpften Tieren wiesen die behandelten Mäuse deutlich weniger Virus-RNA im Blut auf – Zeichen eines partiellen Immunschutzes. „Unsere Forschungsarbeiten weisen darauf hin, dass auch einzelne und künstlich zusammengesetzte Abschnitte des Chikungunya-Oberflächenproteins ausreichen könnten, um eine partiell schützende Immunantwort gegen das Chikungunya-Virus zu induzieren. Wir halten unseren Impfstoffansatz für vielversprechend für die Weiterentwicklung“, erläutert Schnierle die Forschungsergebnisse.

Originalpublikation

Weber C, Büchner SM, Schnierle BS (2015) A Small Antigenic Determinant of the Chikungunya Virus E2 Protein Is Sufficient to Induce Neutralizing Antibodies which Are Partially Protective in Mice. PLoS Negl Trop Dis 9(4): e0003684. doi:10.1371/journal.pntd.0003684

Journalisten können in der Pressestelle des Paul-Ehrlich-Instituts (presse@pei.de) vorab einen Press-Only-Preview-Link auf den Volltext anfordern.

Das Paul-Ehrlich-Institut in Langen bei Frankfurt am Main ist als Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel eine Bundesoberbehörde im Geschäftsbereich des Bundesministeriums für Gesundheit (BMG). Es erforscht, bewertet und lässt biomedizinische Human-Arzneimittel und Veterinär-Impfstoffe zu und ist für die Genehmigung klinischer Prüfungen sowie die Pharmakovigilanz – Erfassung und Bewertung möglicher Nebenwirkungen – zuständig. Die staatliche Chargenprüfung, wissenschaftliche Beratung/Scientific Advice und Inspektionen gehören zu den weiteren Aufgaben des Instituts. Unverzichtbare Basis für die vielseitigen Aufgaben ist die eigene experimentelle Forschung auf dem Gebiet der Biomedizin und der Lebenswissenschaften. Das Paul-Ehrlich-Institut mit seinen rund 800 Mitarbeiterinnen und Mitarbeitern nimmt zudem Beratungsfunktionen in nationalem (Bundesregierung, Länder) und internationalem Umfeld (Weltgesundheitsorganisation, Europäische Arzneimittelbehörde, Europäische Kommission, Europarat und andere) wahr.

http://dx.plos.org/10.1371/journal.pntd.0003684 Link zum Abstract ab Publikationszeitpunkt

Media Contact

Dr. Susanne Stöcker idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer