Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Dolchstössen gegen Amöben

18.08.2017

Forschende der ETH Zürich und der Universität Wien entdeckten bei einer Bakterienart winzige Dolche, mit denen sich die Bakterien wehren können, um nicht von Amöben aufgefressen zu wehren. Ausserdem entschlüsselten die Wissenschaftler die dreidimensionale Struktur der Vorrichtung zum schnellen Ausfahren der Mikro-Dolche.

Bakterien müssen sich vor Amöben in Acht nehmen. Denn hungrige Amöben machen Jagd auf sie. Sie fangen die Bakterien mit ihren Scheinfüsschen, verleiben sie sich ein und verdauen sie schliesslich.


Ein Bündel Dolch-Ausstossapparate im Innern eines Bakteriums. Grün in ihrer «geladenen» Form, rosa mit bereits ausgestossenem Dolch.

Leo Popovich

Allerdings gibt es auch Bakterien, die sich zu wehren wissen. Amoebophilus ist so eines. Forschende der Universität Wien haben es vor einigen Jahren entdeckt. Das Bakterium kann im Innern von Amöben überleben. Mehr noch: Es hat sich das Amöbeninnere sogar zu seinem bevorzugten Lebensraum gemacht.

Wissenschaftler der ETH Zürich fanden nun gemeinsam mit den Wiener Entdeckern des Bakteriums einen Mechanismus, von dem sie annehmen, dass er für das Überleben von Amoebophilus im Amöbeninnern zentral ist. Das Bakterium besitzt Mikro-Dolche und geeignete Ausfahrvorrichtungen. Mit den Dolchen kann es die Amöben von innen piesacken und dadurch dem Verdautwerden entkommen.

Befreiung aus dem Amöbenmagen

Die Ausfahrvorrichtung besteht aus einem Mantelrohr, das über eine Grundplatte und eine Verankerung innen an der Membran des Bakteriums befestigt ist. João Medeiros, Doktorand in der Gruppe von ETH-Professor Martin Pilhofer erklärt den Mechanismus: «Das Mantelrohr steht unter Federspannung, und in dessen Innern liegt der Mikro-Dolch. Zieht sich das Mantelrohr zusammen, wird der Dolch durch die Bakterienmembran extrem schnell nach aussen gedrückt.»

Einverleibte Bakterien befinden sich in den Amöben in einem spezialisierten und von einer Membran umgebenen Verdauungskompartiment. «Unsere Forschungsresultate legen nahe, dass die Bakterien in der Lage sind, die Dolche in die Membran des Amöben-Verdauungskompartiments zu stossen», sagt Désirée Böck, ebenfalls Doktorandin in Pilhofers Gruppe und Erstautorin der in der Fachzeitschrift Science veröffentlichten Arbeit. Dies führt dazu, dass das für die Bakterien unwirtliche Kompartiment zerfällt und die Bakterien freigibt. Ausserhalb des Verdauungskompartiments, aber immer noch im Innern der Amöben, können die Bakterien prima überleben und sich sogar vermehren.

Wie genau das Verdauungskompartiment zerstört wird, ist noch nicht bekannt. «Möglicherweise reisst die Hülle allein aus mechanischen Gründen», sagt Pilhofer. Denkbar sei aber auch, dass die Dolche der Amoebophilus-Bakterien mit einer Art Pfeilgift – mit membranabbauenden Enzymen – imprägniert seien. Im Erbgut der Bakterien sind die Bauanleitungen für solche Enzyme vorhanden, wie Matthias Horn, Professor an der Universität Wien, und seine Mitarbeitenden zeigen konnten.

Präzisionsfräsen

Mit einer ganz neuen Methode, die erst von einer Handvoll Forschungslabors weltweit angewandt wird, darunter jenem von ETH-Professor Pilhofer, konnten die Wissenschaftler die dreidimensionale Struktur der Dolche und ihrer Ausfahrvorrichtungen hochauflösend ermitteln. Doktorandin Böck fror dazu Amöben mit einverleibten Bakterien bei minus 180 Grad Celsius ein.

Vergleichbar mit einem Paläontologen, der mit Hammer und Meissel Fossilien aus einem Stein freilegt, bearbeitete Doktorand Medeiros mit einem fein fokussierten Ionenstrahl (engl. focused ion beam) als «Nanomeissel» die tiefgefrorenen Proben: In beeindruckender Präzisionsarbeit konnte er die Amöbe und einen Grossteil des Bakteriums wegfräsen und so die molekularen Dolche und ihre Abschussvorrichtungen freilegen, um davon schliesslich ein dreidimensionales Elektronentomogramm zu erstellen.

Erstes Bild der Gesamtstruktur

Mit der Dolch-Ausstossvorrichtung verwandte Systeme gibt es auch andernorts in der Biologie: Sich auf die Infektion von Bakterien spezialisierte Viren (Bakteriophagen) injizieren mit solchen Systemen ihr Erbgut in Mikroorganismen. Und es gibt sogar Bakterien, welche solche Mikroapparate in die Umgebung absondern können, wo sie konkurrierende Mikroorganismen bekämpfen.

In ihrer Arbeit präsentieren die Wissenschaftler zum ersten Mal im natürlichen Kontext die gesamte räumliche Struktur einer Ausstossvorrichtung, die sich im Innern einer Zelle befindet. Ausserdem zeigen die Forschenden zum ersten Mal, wie die Grundplatte und die Verankerung dieser Ausstossvorrichtung aussieht. «In der Vergangenheit untersuchten Zellbiologen die Funktion solcher Systeme, und Strukturbiologen konnten die Struktur einzelner Bestandteile aufklären», sagt Pilhofer. «Mit der von uns an der ETH etablierten Technik, dem Kryo-Ionenstrahl-Fräsen und der Kryo-Elektronentomographie, können wir nun jedoch die Brücke schlagen zwischen der Zellbiologie und der Strukturbiologie.»

Mehrläufige Kanonen

Bisher bekannte Mikro-Injektionsapparate treten einzeln auf. Die Wissenschaftler aus Zürich und Wien haben in Amoebophilus nun erstmals Apparate gefunden, die in Bündeln bis zu rund 30 solcher Apparate vorkommen. «Man könnte auch von mehrläufigen Kanonen sprechen», sagt Pilhofer.

Mit Erbgutvergleichen gingen die Forschenden ausserdem der Frage nach, wie Amoebophilus im Laufe der Evolutionsgeschichte zu seinen Dolch-Ausstossvorrichtungen gekommen ist. «Die entsprechenden Gene haben grosse Ähnlichkeit mit jenen der Injektionssysteme von Bakteriophagen», sagt Pilhofer. «Wir gehen davon aus, dass sich die Gene von Vorläufern heutiger Bakteriophagen vor langer Zeit ins Erbgut der Bakterien eingenistet haben.»

Bei weiteren Bakterien ebenfalls vorhanden

Die Erbgutvergleiche legen zudem nahe, dass die neuentdeckten Mikro-Dolche nicht nur bei Amoebophilus vorkommen, sondern darüber hinaus bei zahlreichen weiteren Bakterienarten aus mindestens neun der wichtigsten Bakteriengruppen. Ob diese Bakterien ihre Dolche ebenfalls verwenden, um nicht von Amöben verdaut zu werden, oder ob die Dolche noch ganz anderen Zwecken dienen, müssen die Forschenden erst noch untersuchen. So schnell wird ihnen die Arbeit nicht ausgehen.
Und schliesslich möchten die Wissenschaftler die neue Methode, das Kryo-Ionenstrahl-Fräsen, für die Strukturaufklärung weiterer komplexer Molekülsysteme verwenden. «Die Technik dürfte für viele Fragen der Zell-, Infektions- und Strukturbiologie interessant sein. Bereits jetzt arbeiten wir mit anderen Forschungsgruppen zusammen und bieten ihnen unsere Expertise an», sagt ETH-Doktorand Medeiros.

Literaturhinweis

Böck D, Medeiros JM, Tsao HF, Penz T, Weiss GL, Aistleitner K, Horn M, Pilhofer M: In situ architecture, function, and evolution of a contractile injection system. Science, 17. August 2017, doi: 10.1126/science.aan7904 [http://dx.doi.org/10.1126/science.aan790]

Hochschulkommunikation | Eidgenössische Technische Hochschule Zürich (ETH Zürich)
Weitere Informationen:
http://www.ethz.ch

Weitere Berichte zu: Amöben Bakterien Bakteriophagen Bakterium ETH Erbgut Mikroorganismen Strukturbiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik