Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit dem Vorschlaghammer durch eine doppelte Wand

29.06.2015

Kernporenkomplexe steuern, was in den Zellkern hinein- und aus dem Kern heraustransportiert wird. Die Arbeitsgruppe von Dr. Wolfram Antonin vom Friedrich-Miescher-Laboratorium Tübingen konnte zeigen, dass das Kernporenprotein Nup153 beim Aufbau von Kernporenkomplexen eine wichtige Rolle spielt, indem es wichtige Strukturproteine der Kernporen zur Kernmembran bringt.

Der Zellkern ist die Steuerzentrale der Zelle. Gut geschützt durch eine eigene doppelte Membran, liegt dort auch die DNA, unser Erbgut. Doch der Zellkern ist kein abgeriegeltes Kompartiment. Es herrscht ein genau kontrollierter, aber reger Austausch von Proteinen und anderen Molekülen zwischen dem Zellkern und dem Zellplasma.


Bildung neuer Kernporenkomplexe mit und ohne Nup153

Benjamin Vollmer/Friedrich-Miescher-Laboratorium


Rolle von Nup153 bei der Entstehung neuer Kernporenkomplexe in der Interphase

Benjamin Vollmer/Friedrich-Miescher-Laboratorium

Um den Stoffaustausch kontrollieren zu können, gibt es im Zellkern sogenannte Kernporenkomplexe. In typischen menschlichen Zellen gibt es rund 3000 davon, die je etwa 1000 Transportvorgänge pro Sekunde bewerkstelligen – das gleicht fast schon einer Autobahn.

Die Kernporenkomplexe gehören zu den größten Proteinkomplexen der Zelle, bestehen aber nur aus ungefähr 30 verschiedenen Proteinen, den Nukleoporinen (Nup). Kleinere Moleküle wie Wasser diffundieren einfach durch die Pore, die viel größeren Proteine müssen mit aktivem Transport unter Energieaufwand transportiert werden.

Der Import wird über Transportrezeptoren vermittelt, die das zu transportierende Protein (auch Cargo genannt) erkennen und binden. Im Kern bindet der Transportrezeptor dann an ein Molekül, das für das „Recycling“ des Rezeptors wichtig ist. Es handelt sich um die GTPase Ran. Wenn Ran an den Transportrezeptor bindet, wird das Cargo frei und kann im Kern ihre Aufgabe erfüllen. Auch der Export läuft über Transportrezeptoren, die ihr Cargo im Kern binden und nach draußen befördern.

Wie der Transport durch die Kernpore funktioniert, ist weitgehend bekannt. Wie sich ein solcher Komplex aus den verschiedenen Nukleoporinen bildet, ist aber noch weitgehend unklar. Benjamin Vollmer und Michael Lorenz, Doktoranden in der Arbeitsgruppe Dynamik der Kernhülle unter Leitung von Dr. Wolfram Antonin, konnten mit ihrer Forschung am Friedrich-Miescher-Laboratorium nun Licht ins Dunkel bringen. Sie untersuchten Nup153, eines der Nukleoporine.

Antonin und seine Mitarbeiter konnten durch ihre Versuche zeigen, dass Nup153 nicht nur in bestehenden Komplexen eine Rolle spielt, sondern wesentlich am Einbau neuer Kernporen in die Kernmembran beteiligt ist.

Nup153 bindet an den sogenannten Y-Komplex, ein wichtiges Strukturelement der Kernporenkomplexe. Da es auch Bindestellen für diverse Transportrezeptoren und auch für die GTPase Ran hat, geht man davon aus, dass es vor allem beim Kernimport eine wichtige Rolle spielt. Antonin und seine Gruppe haben untersucht, ob Nup153 wichtig ist, damit sich die Kernpore überhaupt bilden kann. Dazu wählten sie zunächst einen biochemischen Ansatz:

Sie entfernten das Protein aus einem Zellextrakt, der ansonsten alle Bestandteile der Zelle enthält. So kann nachvollzogen werden, welche Bestandteile der Zelle für den untersuchten Prozess wichtig sind. Gibt man nun Erbsubstanz zu diesem Zellextrakt, formt sich eine neue Kernmembran darum – wie bei einer Zellteilung. Tatsächlich bilden sich auch ohne Nup153 noch eine intakte Kernhülle und Kernporenkomplexe. Allerdings häufen diese sich an einer bestimmten Stelle, sie „clustern“.

Um eine Theorie zu beweisen, treten Wissenschaftler gerne noch den Gegenbeweis an. Die Forscher zeigten hier, dass bei Zugabe von Nup153 von außen eine Kernmembran mit gleichmäßig verteilten Kernporenkomplexen entsteht. Versuchten sie dasselbe mit einer Mutante des Proteins, die nicht mehr an die Membran binden kann, stellten sie fest, dass die Kerne kleiner waren. Das könnte zwei Ursachen haben: Entweder, der Import von Proteinen funktioniert nicht mehr richtig. Die Zellkerne wachsen nämlich nur voll aus, wenn genügend neue Proteine in den Kern einwandern können. Das konnten Antonin und seine Mitarbeiter aber widerlegen. Oder aber, es bilden sich weniger Kernporenkomplexe.

Kernporenkomplexe entstehen nicht nur während der Zellteilung und dem Neuaufbau der Kernmembran, sondern auch in der Interphase dazwischen. Dieser Prozess ist noch wesentlich weniger untersucht, als der Aufbau während der Teilungsphase. Er verlangt, dass der Porenkomplex sich nicht wie bei der Teilungsphase in eine entstehende Membran einfügt, sondern eine schon fertige, doppelte Membran durchbricht.

„Stellen Sie sich vor, Sie wollen ein Fenster in einer dicken Mauer haben. Wenn Sie nicht schon beim Bauen eins mit ins Mauerwerk eingefügt haben, müssen Sie erstmal einen Vorschlaghammer nehmen und ein Loch in die Wand schlagen“, sagt Antonin. Wenn sich Nup153 über seine Membran-Bindedomäne in die Doppelmembran schiebt, entsteht eine Spannung in der Membran. Diese krümmt sich leicht ein – eine Pore beginnt sich zu formen.

Um das zu zeigen, haben Antonin und seine Mitarbeiter Kernporenkomplexe gezählt. Wenn Nup153 fehlt, gibt es weniger von diesen. Das kann man durch Zugabe von Nup153 wieder rückgängig machen – nicht aber mit der Mutante, die nicht an die Membran binden kann. Um die Aufgabe von Nup153 genauer zu bestimmen, haben die Wissenschaftler die Interaktionen mit anderen Proteinen untersucht. „Nup153 bindet an Ran und den Y-Komplex. Daher lag die Vermutung nahe, das Nup153 diese Proteine zur Membran bringt“, so Benjamin Vollmer.

Um dies zu untersuchen, wurden zwei künstliche Proteine erzeugt. Die Membran-Bindedomäne von Nup153 wurde entweder mit der Bindedomäne für den Y-Komplex oder für Ran fusioniert. Diese Fusionsproteine wurden zu Zellextrakt ohne Nup153 gegeben, bei dem sich kleinere Kerne gebildet hatten. Nur in den Versuchen mit dem Protein, das die Membranbindedomäne und Y-Komplex-Bindedomäne enthielt, entstanden normalgroße Kerne. Um dies auch in einem schon fertigen Kern zu bestätigen, brachten Antonin und Mitarbeiter die Kernporen zum Leuchten:

Die Kernporenkomplexe können mit einem bestimmten Farbstoff rot angefärbt werden. Der Y-Komplex wird mit einem grün leuchtenden Protein markiert und zusätzlich zugefügt. Neu entstehende Kernporenkomplexe enthalten dann roten Farbstoff und zusätzlich grünen. Entfernt man Nup153, ist kein grünes Leuchten sichtbar. Ohne Nup153 können also keine neuen Kernporenkomplexe in der Interphase entstehen.

„Doppelmembranen gibt es nicht nur um den Kern“, sagt Michael Lorenz, „Nup153 wird aber im Zytoplasma hergestellt. Wir haben uns also gefragt, warum nicht plötzlich an anderen Stellen in der Zelle Kernporenkomplexe entstehen“. Der Schlüssel liegt im Prozess, den der Kernporenkomplex selbst vermittelt. Nup153 muss wie alle anderen Proteine auch mit dem Transportrezeptor Transportin in den Zellkern hinein transportiert werden.

Die Forscher am FML haben festgestellt, dass die Bindestelle für Transportin ganz in der Nähe der Membranbindestelle von Nup153 liegt. Wird das neu entstandene Nup153 von Transportin gebunden, ist die Membranbindestelle überdeckt. Erst, wenn der Import in den Kern erfolgt ist, kann Transportin wieder von seiner Cargo Nup153 abgespalten werden. Dazu braucht es wiederum die GTPase Ran – und die ist in ausreichend hoher Konzentration nur im Zellkern vorhanden.

Man kann die Zelle allerdings auch austricksen – erhöhen die Wissenschaftler die Konzentration von Ran im Zellplasma, können Kernporenkomplexe auch an anderen mehrschichtigen Membranen in der Zelle entstehen. Solche falsch verortete Kernporenkomplexe bilden sich in manchen Krebszellen. Welche Rolle Nup153 im gesunden oder kranken Organismus spielen könnte, muss sich zeigen. Denn das setzt zunächst voraus, dass der gesamte Prozess der Bildung der Kernporenkomplexe und deren Funktionsweise aufgeklärt sind.

Original Publication:
Vollmer et al.: Nup153 Recruits the Nup107-160 Complex to the Inner Nuclear Membrane for Interphasic Nuclear Pore Complex Assembly, Developmental Cell (2015),
DOI: http://dx.doi.org/10.1016/j.devcel.2015.04.02

Weitere Informationen:

http://dx.doi.org/10.1016/j.devcel.2015.04.02

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie
Weitere Informationen:
http://eb.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie