Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit dem Vorschlaghammer durch eine doppelte Wand

29.06.2015

Kernporenkomplexe steuern, was in den Zellkern hinein- und aus dem Kern heraustransportiert wird. Die Arbeitsgruppe von Dr. Wolfram Antonin vom Friedrich-Miescher-Laboratorium Tübingen konnte zeigen, dass das Kernporenprotein Nup153 beim Aufbau von Kernporenkomplexen eine wichtige Rolle spielt, indem es wichtige Strukturproteine der Kernporen zur Kernmembran bringt.

Der Zellkern ist die Steuerzentrale der Zelle. Gut geschützt durch eine eigene doppelte Membran, liegt dort auch die DNA, unser Erbgut. Doch der Zellkern ist kein abgeriegeltes Kompartiment. Es herrscht ein genau kontrollierter, aber reger Austausch von Proteinen und anderen Molekülen zwischen dem Zellkern und dem Zellplasma.


Bildung neuer Kernporenkomplexe mit und ohne Nup153

Benjamin Vollmer/Friedrich-Miescher-Laboratorium


Rolle von Nup153 bei der Entstehung neuer Kernporenkomplexe in der Interphase

Benjamin Vollmer/Friedrich-Miescher-Laboratorium

Um den Stoffaustausch kontrollieren zu können, gibt es im Zellkern sogenannte Kernporenkomplexe. In typischen menschlichen Zellen gibt es rund 3000 davon, die je etwa 1000 Transportvorgänge pro Sekunde bewerkstelligen – das gleicht fast schon einer Autobahn.

Die Kernporenkomplexe gehören zu den größten Proteinkomplexen der Zelle, bestehen aber nur aus ungefähr 30 verschiedenen Proteinen, den Nukleoporinen (Nup). Kleinere Moleküle wie Wasser diffundieren einfach durch die Pore, die viel größeren Proteine müssen mit aktivem Transport unter Energieaufwand transportiert werden.

Der Import wird über Transportrezeptoren vermittelt, die das zu transportierende Protein (auch Cargo genannt) erkennen und binden. Im Kern bindet der Transportrezeptor dann an ein Molekül, das für das „Recycling“ des Rezeptors wichtig ist. Es handelt sich um die GTPase Ran. Wenn Ran an den Transportrezeptor bindet, wird das Cargo frei und kann im Kern ihre Aufgabe erfüllen. Auch der Export läuft über Transportrezeptoren, die ihr Cargo im Kern binden und nach draußen befördern.

Wie der Transport durch die Kernpore funktioniert, ist weitgehend bekannt. Wie sich ein solcher Komplex aus den verschiedenen Nukleoporinen bildet, ist aber noch weitgehend unklar. Benjamin Vollmer und Michael Lorenz, Doktoranden in der Arbeitsgruppe Dynamik der Kernhülle unter Leitung von Dr. Wolfram Antonin, konnten mit ihrer Forschung am Friedrich-Miescher-Laboratorium nun Licht ins Dunkel bringen. Sie untersuchten Nup153, eines der Nukleoporine.

Antonin und seine Mitarbeiter konnten durch ihre Versuche zeigen, dass Nup153 nicht nur in bestehenden Komplexen eine Rolle spielt, sondern wesentlich am Einbau neuer Kernporen in die Kernmembran beteiligt ist.

Nup153 bindet an den sogenannten Y-Komplex, ein wichtiges Strukturelement der Kernporenkomplexe. Da es auch Bindestellen für diverse Transportrezeptoren und auch für die GTPase Ran hat, geht man davon aus, dass es vor allem beim Kernimport eine wichtige Rolle spielt. Antonin und seine Gruppe haben untersucht, ob Nup153 wichtig ist, damit sich die Kernpore überhaupt bilden kann. Dazu wählten sie zunächst einen biochemischen Ansatz:

Sie entfernten das Protein aus einem Zellextrakt, der ansonsten alle Bestandteile der Zelle enthält. So kann nachvollzogen werden, welche Bestandteile der Zelle für den untersuchten Prozess wichtig sind. Gibt man nun Erbsubstanz zu diesem Zellextrakt, formt sich eine neue Kernmembran darum – wie bei einer Zellteilung. Tatsächlich bilden sich auch ohne Nup153 noch eine intakte Kernhülle und Kernporenkomplexe. Allerdings häufen diese sich an einer bestimmten Stelle, sie „clustern“.

Um eine Theorie zu beweisen, treten Wissenschaftler gerne noch den Gegenbeweis an. Die Forscher zeigten hier, dass bei Zugabe von Nup153 von außen eine Kernmembran mit gleichmäßig verteilten Kernporenkomplexen entsteht. Versuchten sie dasselbe mit einer Mutante des Proteins, die nicht mehr an die Membran binden kann, stellten sie fest, dass die Kerne kleiner waren. Das könnte zwei Ursachen haben: Entweder, der Import von Proteinen funktioniert nicht mehr richtig. Die Zellkerne wachsen nämlich nur voll aus, wenn genügend neue Proteine in den Kern einwandern können. Das konnten Antonin und seine Mitarbeiter aber widerlegen. Oder aber, es bilden sich weniger Kernporenkomplexe.

Kernporenkomplexe entstehen nicht nur während der Zellteilung und dem Neuaufbau der Kernmembran, sondern auch in der Interphase dazwischen. Dieser Prozess ist noch wesentlich weniger untersucht, als der Aufbau während der Teilungsphase. Er verlangt, dass der Porenkomplex sich nicht wie bei der Teilungsphase in eine entstehende Membran einfügt, sondern eine schon fertige, doppelte Membran durchbricht.

„Stellen Sie sich vor, Sie wollen ein Fenster in einer dicken Mauer haben. Wenn Sie nicht schon beim Bauen eins mit ins Mauerwerk eingefügt haben, müssen Sie erstmal einen Vorschlaghammer nehmen und ein Loch in die Wand schlagen“, sagt Antonin. Wenn sich Nup153 über seine Membran-Bindedomäne in die Doppelmembran schiebt, entsteht eine Spannung in der Membran. Diese krümmt sich leicht ein – eine Pore beginnt sich zu formen.

Um das zu zeigen, haben Antonin und seine Mitarbeiter Kernporenkomplexe gezählt. Wenn Nup153 fehlt, gibt es weniger von diesen. Das kann man durch Zugabe von Nup153 wieder rückgängig machen – nicht aber mit der Mutante, die nicht an die Membran binden kann. Um die Aufgabe von Nup153 genauer zu bestimmen, haben die Wissenschaftler die Interaktionen mit anderen Proteinen untersucht. „Nup153 bindet an Ran und den Y-Komplex. Daher lag die Vermutung nahe, das Nup153 diese Proteine zur Membran bringt“, so Benjamin Vollmer.

Um dies zu untersuchen, wurden zwei künstliche Proteine erzeugt. Die Membran-Bindedomäne von Nup153 wurde entweder mit der Bindedomäne für den Y-Komplex oder für Ran fusioniert. Diese Fusionsproteine wurden zu Zellextrakt ohne Nup153 gegeben, bei dem sich kleinere Kerne gebildet hatten. Nur in den Versuchen mit dem Protein, das die Membranbindedomäne und Y-Komplex-Bindedomäne enthielt, entstanden normalgroße Kerne. Um dies auch in einem schon fertigen Kern zu bestätigen, brachten Antonin und Mitarbeiter die Kernporen zum Leuchten:

Die Kernporenkomplexe können mit einem bestimmten Farbstoff rot angefärbt werden. Der Y-Komplex wird mit einem grün leuchtenden Protein markiert und zusätzlich zugefügt. Neu entstehende Kernporenkomplexe enthalten dann roten Farbstoff und zusätzlich grünen. Entfernt man Nup153, ist kein grünes Leuchten sichtbar. Ohne Nup153 können also keine neuen Kernporenkomplexe in der Interphase entstehen.

„Doppelmembranen gibt es nicht nur um den Kern“, sagt Michael Lorenz, „Nup153 wird aber im Zytoplasma hergestellt. Wir haben uns also gefragt, warum nicht plötzlich an anderen Stellen in der Zelle Kernporenkomplexe entstehen“. Der Schlüssel liegt im Prozess, den der Kernporenkomplex selbst vermittelt. Nup153 muss wie alle anderen Proteine auch mit dem Transportrezeptor Transportin in den Zellkern hinein transportiert werden.

Die Forscher am FML haben festgestellt, dass die Bindestelle für Transportin ganz in der Nähe der Membranbindestelle von Nup153 liegt. Wird das neu entstandene Nup153 von Transportin gebunden, ist die Membranbindestelle überdeckt. Erst, wenn der Import in den Kern erfolgt ist, kann Transportin wieder von seiner Cargo Nup153 abgespalten werden. Dazu braucht es wiederum die GTPase Ran – und die ist in ausreichend hoher Konzentration nur im Zellkern vorhanden.

Man kann die Zelle allerdings auch austricksen – erhöhen die Wissenschaftler die Konzentration von Ran im Zellplasma, können Kernporenkomplexe auch an anderen mehrschichtigen Membranen in der Zelle entstehen. Solche falsch verortete Kernporenkomplexe bilden sich in manchen Krebszellen. Welche Rolle Nup153 im gesunden oder kranken Organismus spielen könnte, muss sich zeigen. Denn das setzt zunächst voraus, dass der gesamte Prozess der Bildung der Kernporenkomplexe und deren Funktionsweise aufgeklärt sind.

Original Publication:
Vollmer et al.: Nup153 Recruits the Nup107-160 Complex to the Inner Nuclear Membrane for Interphasic Nuclear Pore Complex Assembly, Developmental Cell (2015),
DOI: http://dx.doi.org/10.1016/j.devcel.2015.04.02

Weitere Informationen:

http://dx.doi.org/10.1016/j.devcel.2015.04.02

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie
Weitere Informationen:
http://eb.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demenz: Neue Substanz verbessert Gehirnfunktion
28.07.2017 | Technische Universität München

nachricht Mit einem Flow-Reaktor umweltschonend Wirkstoffe erzeugen
28.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise