Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

13.01.2017

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine von der Mutter und eine vom Vater. Nur Gameten, also Ei-und Spermazellen enthalten eine einfache Kopie. Die Zelle muss also den doppelten Chromosomensatz halbieren um haploide Gameten herstellen zu können. Das passiert in einer besonderen Form der Zellteilung, der Meiose. Die Meiose ist jedoch überraschend kompliziert.


Das Kinase–Enzym Hrr25, hier als Hand dargestellt, koordiniert und kontrolliert die entscheidenden Schritte in der zweiten meiotischen Teilung, wie das Zerschneiden der Chromosomen.

Monika Krause © MPI für Biochemistry


Die Meiose in Hefezellen. In der Meiose I halbiert die Zelle ihren Chromosomensatz (dargestellt in grün). Am Ende der Meiose II entstehen vier Gametenkerne mit einem haploiden Chromosomensatz.

Monika Krause © MPI für Biochemistry

Statt einfach mütterliche und väterliche Chromosomen auf zwei Tochterzellen zu verteilen, werden die Chromosomen zuerst dupliziert, sodass sie aus jeweils zwei Strängen, den Chromatiden, bestehen. Verdoppelte väterliche und mütterliche Chromosomen lagern sich dann zusammen und die Chromosomenarme werden kreuzweise miteinander verknüpft.

Es entstehen neue Chromosomen aus vier Chromatiden, die durch ringförmige Proteinkomplexe, die Kohäsine, wie mit Bindfäden zusammengehalten werden. Um die Chromosomen wieder in ihre Chromatiden zu zerlegen, sind zwei Kernteilungen nötig, die erste und die zweite meiotische Teilung. In der ersten Teilung werden die Kohäsinringe auf den Chromosomarmen von einer molekularen Schere, dem Enzym Separase, aufgeschnitten.

Es entstehen X-förmige Chromosomen aus zwei Chromatiden, die nur noch in ihrer Mitte am Centromer, durch Kohäsinringe zusammengehalten werden. Im zweiten Teil der Meiose zerschneidet die Separase die Kohäsinringe dann endgültig. So entstehen vier haploide Gametenkerne, die jeweils eine Chromatide von jedem Chromosom, also eine Bauanleitung für den Körper enthalten. Kommt es zur Befruchtung, vermischt sich die genetische Information von Vater und Mutter und ein neuer diploider Chromosomensatz entsteht, oder einfach gesagt: Ein Baby mit Papas Nase und Mamas Augen.

Die Frage ist nun, woher weiß die Separase Schere wann welche Kohäsinringe geschnitten werden müssen? Wenn Kohäsinringe zu früh oder an der falschen Stelle aufgeschnitten werden, entstehen Chromosomenverteilungsfehler die zu Frühgeburt oder Trisomie, wie dem Down-Syndrom führen.

Wolfgang Zachariae und seine Forschungsgruppe Biologie der Chromosomen haben bereits gezeigt, wie die Kohäsinringe für das Aufschneiden markiert werden. Dazu überträgt das Kinase-Enzym Hrr25 ein Phosphatmolekül auf die Schnittstelle des Kohäsinrings, was der Separase Schere signalisiert: „Hier schneiden!“. Auf diese Weise werden in der ersten Teilung die Kohäsinringe von den Chromosomenarmen entfernt. Die Kohäsinringe auf den Centromeren werden jedoch vor der Schere geschützt indem ein Phosphatase-Enzym die Phosphat-Markierung wieder entfernt.

„Die Entscheidung ob ein Kohäsinring geschnitten wird, hängt also letztlich vom Kampf Kinase-gegen-Phosphatase ab. In der ersten Teilung gewinnt die Kinase auf den Chromosomenarmen, verliert aber gegen die Phosphatase auf den Centromeren“, erklärt Zachariae. Die neueste Arbeit der Gruppe zeigt nun, wie die Kinase in der zweiten Teilung ihren Kampf gegen die Phosphastase am Centromer gewinnt.

Dazu bringt Hrr25 einen zellulären Proteinschredder dazu, die Verbindung der Phosphatase zum Centromer zu kappen. Die Phosphatase verschwindet vom Centromer woraufhin Hrr25 das Kohäsin für die Separase Schere markieren kann und die Chromatiden getrennt werden. Zusätzlich zur Chromatidentrennung bewirkt die Hrr25 Kinase auch den Austritt aus der Meiose und startet die Bildung der Sporen, was der Gametenbildung in Hefe entspricht. „Hrr25 ist damit so etwas wie der Dirigent der zweiten meiotischen Teilung“, fasst Zachariae zusammen.

Diese vielseitige Kinase ist auch bei uns Menschen vorhanden. Ob Hrr25 auch bei uns die entscheidenden Schritte in der zweiten meiotischen Teilung steuert, sollen künftige Studien zeigen. „Experimente an Hefen geben uns wichtige Hypothesen an die Hand, wie die Chromosomenverteilung in höheren Organismen reguliert werden könnte“, sagt Wolfgang Zachariae. „Diese Studien sollen helfen, die Ursachen von Chromosomenverteilungsfehlern in menschlichen Eizellen zu finden“.

Originalpublikation:
Orlando Argüello-Miranda,Ievgeniia Zagoriy,Valentina Mengoli, Julie Rojas, Katarzyna Jonak, Tugce Oz, Peter Graf, Wolfgang Zachariae: “Casein Kinase 1 Coordinates Cohesin Cleavage, Gametogenesis, and Exit from M Phase in Meiosis II”. Developmental Cell, 2017
DOI: http://dx.doi.org/10.1016/j.devcel.2016.11.021

Kontakt:
Dr. Wolfgang Zachariae
Biologie der Chromosomen
Max-Planck-Institut of Biochemistry
Am Klopferspitz 18
82152 Martinsried
E-Mail: zachar@biochem.mpg.de
http://www.biochem.mpg.de/en/rg/zachariae

Dr. Christiane Menzfeld
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de

www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/en/rg/zachariae- Webseite der Abteilung von Wolfang Zachariae
http://www.biochem.mpg.de- Webseite des Max-Planck-Institutes für Biochemie

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie