Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

13.01.2017

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine von der Mutter und eine vom Vater. Nur Gameten, also Ei-und Spermazellen enthalten eine einfache Kopie. Die Zelle muss also den doppelten Chromosomensatz halbieren um haploide Gameten herstellen zu können. Das passiert in einer besonderen Form der Zellteilung, der Meiose. Die Meiose ist jedoch überraschend kompliziert.


Das Kinase–Enzym Hrr25, hier als Hand dargestellt, koordiniert und kontrolliert die entscheidenden Schritte in der zweiten meiotischen Teilung, wie das Zerschneiden der Chromosomen.

Monika Krause © MPI für Biochemistry


Die Meiose in Hefezellen. In der Meiose I halbiert die Zelle ihren Chromosomensatz (dargestellt in grün). Am Ende der Meiose II entstehen vier Gametenkerne mit einem haploiden Chromosomensatz.

Monika Krause © MPI für Biochemistry

Statt einfach mütterliche und väterliche Chromosomen auf zwei Tochterzellen zu verteilen, werden die Chromosomen zuerst dupliziert, sodass sie aus jeweils zwei Strängen, den Chromatiden, bestehen. Verdoppelte väterliche und mütterliche Chromosomen lagern sich dann zusammen und die Chromosomenarme werden kreuzweise miteinander verknüpft.

Es entstehen neue Chromosomen aus vier Chromatiden, die durch ringförmige Proteinkomplexe, die Kohäsine, wie mit Bindfäden zusammengehalten werden. Um die Chromosomen wieder in ihre Chromatiden zu zerlegen, sind zwei Kernteilungen nötig, die erste und die zweite meiotische Teilung. In der ersten Teilung werden die Kohäsinringe auf den Chromosomarmen von einer molekularen Schere, dem Enzym Separase, aufgeschnitten.

Es entstehen X-förmige Chromosomen aus zwei Chromatiden, die nur noch in ihrer Mitte am Centromer, durch Kohäsinringe zusammengehalten werden. Im zweiten Teil der Meiose zerschneidet die Separase die Kohäsinringe dann endgültig. So entstehen vier haploide Gametenkerne, die jeweils eine Chromatide von jedem Chromosom, also eine Bauanleitung für den Körper enthalten. Kommt es zur Befruchtung, vermischt sich die genetische Information von Vater und Mutter und ein neuer diploider Chromosomensatz entsteht, oder einfach gesagt: Ein Baby mit Papas Nase und Mamas Augen.

Die Frage ist nun, woher weiß die Separase Schere wann welche Kohäsinringe geschnitten werden müssen? Wenn Kohäsinringe zu früh oder an der falschen Stelle aufgeschnitten werden, entstehen Chromosomenverteilungsfehler die zu Frühgeburt oder Trisomie, wie dem Down-Syndrom führen.

Wolfgang Zachariae und seine Forschungsgruppe Biologie der Chromosomen haben bereits gezeigt, wie die Kohäsinringe für das Aufschneiden markiert werden. Dazu überträgt das Kinase-Enzym Hrr25 ein Phosphatmolekül auf die Schnittstelle des Kohäsinrings, was der Separase Schere signalisiert: „Hier schneiden!“. Auf diese Weise werden in der ersten Teilung die Kohäsinringe von den Chromosomenarmen entfernt. Die Kohäsinringe auf den Centromeren werden jedoch vor der Schere geschützt indem ein Phosphatase-Enzym die Phosphat-Markierung wieder entfernt.

„Die Entscheidung ob ein Kohäsinring geschnitten wird, hängt also letztlich vom Kampf Kinase-gegen-Phosphatase ab. In der ersten Teilung gewinnt die Kinase auf den Chromosomenarmen, verliert aber gegen die Phosphatase auf den Centromeren“, erklärt Zachariae. Die neueste Arbeit der Gruppe zeigt nun, wie die Kinase in der zweiten Teilung ihren Kampf gegen die Phosphastase am Centromer gewinnt.

Dazu bringt Hrr25 einen zellulären Proteinschredder dazu, die Verbindung der Phosphatase zum Centromer zu kappen. Die Phosphatase verschwindet vom Centromer woraufhin Hrr25 das Kohäsin für die Separase Schere markieren kann und die Chromatiden getrennt werden. Zusätzlich zur Chromatidentrennung bewirkt die Hrr25 Kinase auch den Austritt aus der Meiose und startet die Bildung der Sporen, was der Gametenbildung in Hefe entspricht. „Hrr25 ist damit so etwas wie der Dirigent der zweiten meiotischen Teilung“, fasst Zachariae zusammen.

Diese vielseitige Kinase ist auch bei uns Menschen vorhanden. Ob Hrr25 auch bei uns die entscheidenden Schritte in der zweiten meiotischen Teilung steuert, sollen künftige Studien zeigen. „Experimente an Hefen geben uns wichtige Hypothesen an die Hand, wie die Chromosomenverteilung in höheren Organismen reguliert werden könnte“, sagt Wolfgang Zachariae. „Diese Studien sollen helfen, die Ursachen von Chromosomenverteilungsfehlern in menschlichen Eizellen zu finden“.

Originalpublikation:
Orlando Argüello-Miranda,Ievgeniia Zagoriy,Valentina Mengoli, Julie Rojas, Katarzyna Jonak, Tugce Oz, Peter Graf, Wolfgang Zachariae: “Casein Kinase 1 Coordinates Cohesin Cleavage, Gametogenesis, and Exit from M Phase in Meiosis II”. Developmental Cell, 2017
DOI: http://dx.doi.org/10.1016/j.devcel.2016.11.021

Kontakt:
Dr. Wolfgang Zachariae
Biologie der Chromosomen
Max-Planck-Institut of Biochemistry
Am Klopferspitz 18
82152 Martinsried
E-Mail: zachar@biochem.mpg.de
http://www.biochem.mpg.de/en/rg/zachariae

Dr. Christiane Menzfeld
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de

www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/en/rg/zachariae- Webseite der Abteilung von Wolfang Zachariae
http://www.biochem.mpg.de- Webseite des Max-Planck-Institutes für Biochemie

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Geheimnis der Sojabohne: Mainzer Forscher untersuchen Ölkörperchen in Sojabohnen
20.06.2018 | Max-Planck-Institut für Polymerforschung

nachricht Schlüsselmolekül des Alterns entdeckt
20.06.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics