Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Barcodes der Zellentwicklung auf der Spur

17.08.2017

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich unterschiedliche Entwicklungslinien auf wie in einem Baum. Den Baumstamm bilden die Stammzellen, die Äste verschiedene Vorläuferzellen, aus denen sich noch mehrere unterschiedliche Zelltypen entwickeln können. Dann verzweigt es sich zu den spezialisierten Blutzellen, den roten Blutkörperchen, Blutplättchen und verschiedenen weißen Blutkörperchen, die der Immunabwehr dienen. In den letzten Jahren häuften sich jedoch die Zweifel an diesem Modell.


Barcode Blutstammzellen

Quelle: Nicole Schuster/DKFZ

Hans-Reimer Rodewald, Deutsches Krebsforschungszentrum, und seine Mitarbeiter wollten statt Momentaufnahmen das dynamische Geschehen bei der Entwicklung von Blutzellen erfassen. In enger Zusammenarbeit mit dem Team um den Systembiologen Thomas Höfer haben die Wissenschaftler eine neue Technologie entwickelt, mit der sie Zellen in ihrer Entwicklung exakt verfolgen können. Dazu markieren sie Stammzellen mit einer Art genetischem Barcode, um deren Nachkommen später eindeutig identifizieren zu können.

„Genetische Barcodes sind schon in der Vergangenheit entwickelt und eingesetzt worden, basierten jedoch auf Methoden, die auch die Zelleigenschaften verändern können“, so Rodewald. „Unsere Barcodes dagegen können gewebespezifisch direkt im Erbgut der Mäuse induziert werden – ohne die physiologische Entwicklung der Tiere zu beeinflussen.“ Grundlage dafür bildet das sogenannte Cre/loxP-System, mit dem sich speziell markierte DNA-Abschnitte umordnen oder entfernen lassen.

Weike Pei und Thorsten Feyerabend in Rodewalds Labor züchteten dazu Mäuse, die die Grundelemente des Barcodes in ihrem Genom tragen: An einer ausgewählten Stelle, an der keine Erbanlagen verschlüsselt sind, befinden sich neun kleine DNA-Schnipsel aus einer Pflanze, der Ackerschmalwand. Flankiert werden diese Elemente von insgesamt zehn genetischen Schnittstellen, loxP genannt.

In den Blutstammzellen der Tiere lässt sich nun die dazu passende molekulare Schere „Cre“ durch die Gabe eines Wirkstoffs aktivieren. Dann werden zufällig Code-Elemente umgeordnet oder herausgeschnitten. „Dieser genetische Zufallsgenerator kann bis zu 1,8 Millionen verschiedener genetischer Barcodes erzeugen, und wir können diejenigen Codes identifizieren, die in einem Experiment nur einmal entstehen“, sagt Höfer.

„Den Rest der Arbeit übernehmen die Mäuse“, sagt Rodewald. Denn wenn sich die so markierten Blutstammzellen teilen und heranreifen, bleiben die Barcodes erhalten. In Zusammenarbeit mit dem Max-Delbrück-Zentrum für molekulare Medizin haben die Wissenschaftler umfangreiche Barcode-Analysen durchgeführt, um nachzuverfolgen, von welcher Stammzelle eine bestimmte Blutzelle abstammt.

Diese Analysen haben ergeben, dass aus den Blutstammzellen der Mäuse zwei große Entwicklungsäste hervorgehen: In einem Ast entwickeln sich die T- und B-Zellen des Immunsystems. Im anderen die roten Blutkörperchen sowie verschiedene weitere weiße Blutkörperchen, etwa Granulozyten oder Monozyten. Alle diese Zelltypen können aus einer einzelnen Stammzelle entstehen. „Unsere Befunde zeigen, dass das klassische Modell eines hierarchischen Entwicklungsbaumes, der von multipotenten Stammzellen ausgeht, für die Blutbildung gilt“, betont Rodewald.

Das System der Heidelberger eignet sich nicht nur dazu, die Entwicklung von Blutzellen zu untersuchen. Die Strategie lässt sich im Prinzip in jedem Gewebe anwenden. Auch der Ursprung von Leukämien und anderen Krebserkrankungen könnte sich in Zukunft auf diese Weise experimentell verfolgen lassen.

Weike Pei, Thorsten B. Feyerabend, Jens Rössler, Xi Wang, Daniel Postrach, Katrin Busch, Immanuel Rode, Kay Klapproth, Nikolaus Dietlein, Claudia Quedenau, Wei Chen, Sascha Sauer, Stephan Wolf, Thomas Höfer und Hans-Reimer Rodewald: Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 2017, DOI: 10.1038/nature23653

Ein Bild zur Pressemitteilung steht zum Download zur Verfügung:
http://www.dkfz.de/de/presse/pressemitteilungen/2017/bilder/Barcode_Blutstammzel...

Nutzungshinweis für Bildmaterial zu Pressemitteilungen
Die Nutzung ist kostenlos. Das Deutsche Krebsforschungszentrum (DKFZ) gestattet die einmalige Verwendung in Zusammenhang mit der Berichterstattung über das Thema der Pressemitteilung bzw. über das DKFZ allgemein. Als Bildnachweis ist folgendes anzugeben: „Quelle: Nicole Schuster/DKFZ“.
Eine Weitergabe des Bildmaterials an Dritte ist nur nach vorheriger Rücksprache mit der DKFZ-Pressestelle (Tel. 06221 42 2854, E-Mail: presse@dkfz.de) gestattet. Eine Nutzung zu kommerziellen Zwecken ist untersagt.

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Ansprechpartner für die Presse:

Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
E-Mail: S.Kohlstaedt@dkfz.de
E-Mail: presse@dkfz.de

www.dkfz.de

Dr. Sibylle Kohlstädt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von der Genexpression zur Mikrostruktur des Gehirns
24.04.2018 | Forschungszentrum Jülich

nachricht Nano-Ampel zeigt Risiko an
24.04.2018 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics