Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mini-Eiweiße für sichere Implantate

01.04.2009
Jährlich erhalten weltweit zwischen 50 bis 100 Millionen Menschen Implantate.

Bei etwa 1 bis 7 Prozent der Patienten kommt es dabei zu ernsthaften Komplikationen aufgrund von Infektionen. Die Prävention solcher Implantat verursachten Infektionen hat daher eine hohe Priorität.

Wissenschaftlern des KIT-Instituts für Biologische Grenzflächen (IBG) ist es nun gelungen, hochwirksame Eiweißketten zu identifizieren, die als entzündungshemmende Schutzschicht auf Implantaten eingesetzt werden könnten (Chemistry & Science, Vol. 16, Issue 1).

Die IBG-Wissenschaftler haben dazu zusammen mit Kollegen der University of British Columbia eine neue Screening-Methode entwickelt. Mit dem Verfahren lässt sich in kurzer Zeit eine große Anzahl von Verbindungen darauf testen, ob sie eine Infektion an einer Oberfläche abwehren können. Untersucht wurden so genannte antibakterielle Peptide, kleine Eiweiße, die aus einer kurzen Kette von Aminosäuren bestehen. "Antibakterielle Peptide sind superfaszinierende Moleküle, die immer noch viele Mysterien in sich tragen", sagt Dr. Kai Hilpert, Nachwuchsgruppenleiter am IBG.

Die aus 12 bis 50 Aminosäuren bestehenden Eiweiße sind hochinteressant für die Infektionsbekämpfung, weil sie sowohl gramnegative wie auch grampositive Bakterien, aber auch Pilze, Viren oder Parasiten abtöten können. Auch im Immunsystem übernehmen die Mini-Eiweiße wichtige Funktionen. Doch obwohl man sie schon seit den sechziger Jahren kennt, ist ihre Wirkweise bis heute rätselhaft. Insbesondere gilt dies für die kurzkettigen Eiweiße, mit denen sich Kai Hilperts Team beschäftigt.

Bakterien umgibt eine Schutzschicht, die noch vor der eigentlichen Zellmembran liegt. Sie ist ungefähr zehnmal so dick wie die Mini-Eiweiße selbst. "Wir können zeigen, dass die Eiweiße eine Wirkung auf die Membran haben, wissen aber gleichzeitig, dass sie dort nicht hingelangen können", stellt Kai Hilpert erstaunt fest. Der IBG-Wissenschaftler und sein Team arbeiten zurzeit an der Optimierung und Automatisierung einer Screeningmethode, mit der später 8.000 bis 10.000 Substanzen in der Woche getestet werden sollen. Auf diese Weise wollen die KIT-Wissenschaftler hochwirksame Substanzen finden, die direkt auf Implantatoberflächen gebunden werden und dort Infektionen abwehren können.

Im Karlsruher Institut für Technologie (KIT) schließen sich das Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft und die Universität Karlsruhe zusammen. Damit wird eine Einrichtung international herausragender Forschung und Lehre in den Natur- und Ingenieurwissenschaften aufgebaut. Im KIT arbeiten insgesamt 8000 Beschäftigte mit einem jährlichen Budget von 700 Millionen Euro. Das KIT baut auf das Wissensdreieck Forschung - Lehre - Innovation.

Die Karlsruher Einrichtung ist ein führendes europäisches Energieforschungszentrum und spielt in den Nanowissenschaften eine weltweit sichtbare Rolle. KIT setzt neue Maßstäbe in der Lehre und Nachwuchsförderung und zieht Spitzenwissenschaftler aus aller Welt an. Zudem ist das KIT ein führender Innovationspartner für die Wirtschaft.

Dr. Elisabeth Zuber-Knost | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demenz: Neue Substanz verbessert Gehirnfunktion
28.07.2017 | Technische Universität München

nachricht Mit einem Flow-Reaktor umweltschonend Wirkstoffe erzeugen
28.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise