Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Milchsäure für die Energie im Gehirn

24.11.2015

Nervenzellen decken ihren hohen Energiebedarf mit Glukose und auch mit Milchsäure ab. Das belegen jetzt Forscher der Universität Zürich. Sie zeigen erstmals im intakten Mäusegehirn den Austausch von Milchsäure zwischen verschiedenen Hirnzellen. Damit untermauern sie eine 20 Jahre alte Hypothese.

Im Vergleich mit anderen Organen verbraucht das menschliche Gehirn am meisten Energie. Die Energieversorgung der Nervenzellen und die Rolle, welche Milchsäure (Laktat) dabei spielt, diskutieren Forscher schon länger kontrovers.


Grafik des Mechanismus

UZH; Frank Brüderli

Eine in den 90-er Jahren aufgestellte Hypothese besagt: Dem Energie-Stoffwechsel im Hirn liegt eine gut aufeinander abgestimmte Tätigkeit zwischen zwei Zelltypen, den Astrozyten und Neuronen, zugrunde. Die Astrozyten produzieren Milchsäure.

Diese fliesst in die Neuronen, damit diese ihren hohen Energiebedarf decken können. Aufgrund unzulänglicher experimenteller Techniken blieb bis heute unklar, ob zwischen Astrozyten und Neuronen tatsächlich ein Austausch von Milchsäure besteht.

Die Arbeitsgruppe um Professor Bruno Weber vom Institut für Pharmakologie und Toxikologie belegt, dass zwischen Astrozyten und Neuronen eine deutlich unterschiedliche Konzentration an Milchsäure besteht.

Transport von Milchsäure ist abhängig von der Konzentration

Der Ein- und Austritt von Milchsäure in und aus Körperzellen geschieht konzentrationsabhängig über spezifische Milchsäuretransporter, auch Monocarboxylat-Transporter oder MCT genannt. Eine typische Eigenschaft von gewissen Transporter-Proteinen ist die sogenannte Transakzeleration.

«Man kann sich MCT als Drehtüren in einem Einkaufszentrum vorstellen, die sich bei Personenandrang von beiden Seiten schneller drehen», erklärt Bruno Weber, Professor für Multimodale Experimentelle Bildgebung an der Universität Zürich. Die Zürcher Forscher machten sich diese Eigenschaft zunutze und beschleunigten die «Drehtüren».

Durch Erhöhung der ausserzellulären Pyruvat-Konzentration stimulierten sie den Transport von Milchsäure aus den Zellen. Dadurch kam es zu einer messbaren Entleerung der astrozytären Milchsäure. Interessanterweise änderte sich jedoch die Milchsäure-Konzentration in den Neuronen nicht. Gestützt auf dieses Resultat sowie die Resultate weiterer Kontrollexperimente bestätigte sich ein deutlicher Milchsäureunterschied zwischen Astrozyten und Nervenzellen.

«Da Milchsäure mittels MCT passiv über Zellmembranen verschoben wird, ist ein solcher Konzentrationsunterschied zwischen den zwei Zelltypen eine notwendige Voraussetzung für den Milchsäurefluss», sagt Bruno Weber.

Anhand eines Proteins, das gezielt in Astrozyten und Nervenzellen aufgebaut wird, konnten die Forscher die veränderte Milchsäure-Konzentration in den Zellen in Echtzeit messen. Die im Protein enthaltenen fluoreszierenden Seitenketten verändern die Intensität ihrer Fluoreszenz je nach Menge der Milchsäure. «Wir konnten diese Fluoreszenzänderungen anhand der speziellen Zwei-Photonenmikroskopie in anästhesierten Mäusen messen», erklärt Bruno Weber.

Mehr als 20 Jahre nach der Formulierung der Hypothese, dass Nervenzellen Milchsäure abbauen, sind die Forscher dem endgültigen Beweis im intakten Organismus einen wichtigen Schritt näher gekommen. «Bei zahlreichen Hirnerkrankungen treten bereits früh Störungen des Energiestoffwechsels auf. Dies unterstreicht die Wichtigkeit eines exakten Verständnisses der Vorgänge auf Zellebene, die zu einer normal funktionierenden Energiebereitstellung im Hirn beitragen», schliesst Bruno Weber.

Literatur:
P. Mächler, M.T. Wyss, M. Elsayed, J. Stobart, R. Gutierrez, A. von Faber-Castell, V. Kaelin, A. Zuend M. San Martín, I. Romero-Gómez, F. Baeza-Lehnert, S. Lengacher, B.L. Schneider, P. Aebischer, P.J. Magistretti, L.F Barros, B. Weber. In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metabolism 23, 1–9. November 19, 2015. Doi: org./10.1016/j.cmet.2015.10.010

Weitere Informationen:

http://www.mediadesk.uzh.ch

Beat Müller | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics